• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Working paper

Dense families of modular curves, prime numbers and uniform symmetric tensor rank of multiplication in certain finite fields

Ballet S., Zykin A. I.
We obtain new uniform bounds for the symmetric tensor rank of multiplication in finite extensions of any finite field Fp or Fp2 where p denotes a prime number greater or equal than 5. In this aim, we use the symmetric Chudnovsky-type generalized algorithm applied on sufficiently dense families of modular curves defined over Fp2 attaining the Drinfeld-Vladuts bound and on the descent of these families to the definition field Fp. These families are obtained thanks to prime number density theorems of type Hoheisel, in particular a result due to Dudek (2016).