• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Working paper

Gale duality and homogeneous toric varieties

A non-degenerate toric variety X is called S-homogeneous if the subgroup of the automorphism group Aut(X) generated by root subgroups acts on X transitively. We prove that maximal S-homogeneous toric varieties are in bijection with pairs (P,A), where P is an abelian group and A is a finite collection of elements in P such that A generates the group P and for every a∈A the element a is contained in the semigroup generated by A∖{a}. We show that any non-degenerate homogeneous toric variety is a big open toric subset of a maximal S-homogeneous toric variety. In particular, every homogeneous toric variety is quasiprojective. We conjecture that any non-degenerate homogeneous toric variety is S-homogeneous.