### Working paper

## Telegraph process in the bounded domain with absorbing lower boundary and reflecting with delay upper boundary

In this work we derive an inversion formula for the Laplace transform of a density observed on a curve in the complex domain, which generalizes the well known Post– Widder formula. We establish convergence of our inversion method and derive the corresponding convergence rates for the case of a Laplace transform of a smooth density. As an application we consider the problem of statistical inference for variance-mean mixture models. We construct a nonparametric estimator for the mixing density based on the generalized Post–Widder formula, derive bounds for its root mean square error and give a brief numerical example.

Given a Lévy process (Lt)t≥0 and an independent nondecreasing process (time change) (T(t))t≥0, we consider the problem of statistical inference on T based on low-frequency observations of the time-changed Lévy process LT(t). Our approach is based on the genuine use of Mellin and Laplace transforms. We propose a consistent estimator for the density of the increments of T in a stationary regime, derive its convergence rates and prove the optimality of the rates. It turns out that the convergence rates heavily depend on the decay of the Mellin transform of T. Finally, the performance of the estimator is analysed via a Monte Carlo simulation study.

We construct a mathematical model of anti-virus protection of local area networks. The model belongs to the class of regenerative processes. To protect the network from the external attacks of viruses and the spread of viruses within the network we apply two methods: updating antivirus signatures and reinstallings of operating systems (OS). Operating systems are reinstalled in the case of failure of any of the computers (non- scheduled emergent reinstalling) or at scheduled time moments. We consider a maximization problem of an average unit income. The cumulative distribution function (CDF) of the scheduled intervals between complete OS reinstallings is considered as a control. We prove that the optimal CDF has to be degenerate, ie, it is localized at a point τ τ

We consider Markov models of multicomponent systems with synchronizing interaction. Under natural regularity assumptions about the message routing graph, they have nice longtime behavior. We are interested in limit probability laws related to the steady state viewed from the center-of-mass coordinate system.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

We construct a mathematical model of anti-virus protection of local area networks. The model belongs to the class of regenerative processes. To protect the network from the external attacks of viruses and the spread of viruses within the network we apply two methods: updating antivirus signatures and reinstallings of operating systems (OS). Operating systems are reinstalled in the case of failure of any of the computers (non-scheduled emergent reinstalling) or at scheduled time moments. We consider a maximization problem of an average unit income. The cumulative distribution function (CDF) of the scheduled intervals between complete OS reinstallings is considered as a control. We prove that the optimal CDF has to be degenerate, i.e., it is localized at a point* tau*.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.