### Working paper

## Some remarks on discrete and semi-discrete transparent boundary conditions for solving the time-dependent Schrödinger equation on the half-axis

An initial-boundary value problem for the *n *-dimensional ($n\geq 2$) time-dependent Schrödinger equation in a semi-infinite parallelepiped is considered. Starting from the Numerov–Crank–Nicolson finite-difference scheme, we first construct higher order scheme with splitting space averages having much better spectral properties for $n\geq 3$. Next we apply the Strang-type splitting with respect to the potential and, third, construct discrete transparent boundary conditions (TBC). For the resulting double-splitting method, the uniqueness of solution and the uniform in time L2-stability are proved and an error estimate is stated. Owing to the splitting, an effective direct algorithm using FFT (in the coordinate directions perpendicular to the leading axis of the parallelepiped) is applied to implement the scheme for general potential.

We consider the time-dependent 1D Schrödinger equation on the half-axis with variable coefficients becoming constant for large x. We study a two-level symmetric in time (i.e. the Crank-Nicolson) and any order finite element in space numerical method to solve it. The method is coupled to an approximate transparent boundary condition (TBC). We prove uniform in time stability with respect to initial data and a free term in two norms, under suitable conditions on an operator in the approximate TBC. We also consider the corresponding method on an infinite mesh on the half-axis. We derive explicitly the discrete TBC allowing us to restrict the latter method to a finite mesh. The operator in the discrete TBC is a discrete convolution in time; in turn its kernel is a multiple discrete convolution. The stability conditions are justified for it. The accomplished computations confirm that high order finite elements coupled to the discrete TBC are effective even in the case of highly oscillating solutions and discontinuous potentials.

The study is carried out by the first author within The National Research University Higher School of Economics' Academic Fund Program in 2012-2013, research grant No. 11-01-0051.

An initial-boundary value problem for the 1D self-adjoint parabolic equation on the half-axis is solved. We study a broad family of two-level finite-difference schemes with two parameters related to averages both in time and space. Stability in two norms is proved by the energy method. Also discrete transparent boundary conditions are rigorously derived for schemes by applying the method of reproducing functions. Results of numerical experiments are included as well.

We deal with an initial-boundary value problem for the generalized time-dependent Schrödinger equation with variable coefficients in an unbounded $n$-dimensional parallelepiped ($n\geq 1$). To solve it, the Crank-Nicolson in time and the polylinear finite element in space method with the discrete transparent boundary conditions is considered. We present its stability properties and derive new error estimates $O(\tau^2+|h|^2)$ uniformly in time in $L^2$ space norm, for $n\geq 1$, and mesh $H^1$ space norm, for $1\leq n\leq 3$ (a superconvergence result), under the Sobolev-type assumptions on the initial function. Such estimates are proved for methods with the discrete TBCs for the first time.

This book constitutes the thoroughly refereed conference proceedings of the 6th International Conference on Finite Difference Methods, FDM 2014, held in Lozenetz, Bulgaria, in June 2014. The 36 revised full papers were carefully reviewed and selected from 62 submissions. These papers together with 12 invited papers cover topics such as finite difference finite element methods and various its applications in physics, chemistry, biology and finance.

We consider certain spaces of functions on the circle, which naturally appear in harmonic analysis, and superposition operators on these spaces. We study the following question: which functions have the property that each their superposition with a homeomorphism of the circle belongs to a given space? We also study the multidimensional case.

We consider the spaces of functions on the m-dimensional torus, whose Fourier transform is p -summable. We obtain estimates for the norms of the exponential functions deformed by a C1 -smooth phase. The results generalize to the multidimensional case the one-dimensional results obtained by the author earlier in “Quantitative estimates in the Beurling—Helson theorem”, Sbornik: Mathematics, 201:12 (2010), 1811 – 1836.

We consider the spaces of function on the circle whose Fourier transform is p-summable. We obtain estimates for the norms of exponential functions deformed by a C1 -smooth phase.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.