### Working paper

## Local geometry of bihamiltonian structures and invariant volume forms

A Poisson pencil is called flat if all brackets of the pencil can be simultaneously locally brought to a constant form. Given a Poisson pencil on a 3-manifold, we study under which conditions it is flat. Since the works of Gelfand and Zakharevich, it is known that a pencil is flat if and only if the associated Veronese web is trivial. We suggest a simpler obstruction to flatness, which we call the curvature form of a Poisson pencil. This form can be defined in two ways: either via the Blaschke curvature form of the associated web, or via the Ricci tensor of a connection compatible with the pencil.

We show that the curvature form of a Poisson pencil can be given by a simple explicit formula. This allows us to study flatness of linear pencils on three-dimensional Lie algebras, in particular those related to the argument translation method. Many of them appear to be non-flat.

In this article, we give an explicit formula for the universal weight function of the quantum twisted affine algebra Uq(A(2)2 ). The calculations use the technique of projecting products of Drinfeld currents onto the intersection of Borel subalgebras of different types.

We consider the totally asymmetric exclusion process in discrete time with generalized updating rules. We introduce a control parameter into the interaction between particles. Two particular values of the parameter correspond to known parallel and sequential updates. In the whole range of its values the interaction varies from repulsive to attractive. In the latter case the particle flow demonstrates an apparent jamming tendency not typical for the known updates. We solve the master equation for *N* particles on the infinite lattice by the Bethe ansatz. The non-stationary solution for arbitrary initial conditions is obtained in a closed determinant form.