• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Working paper

Algebraic geometry and stability for integrable systems

Izosimov A.
In 1970s, a method was developed for integration of nonlinear equations by means of algebraic geometry. Starting from a Lax representation with a spectral parameter, the algebro-geometric method allows to solve the system explicitly in terms of Theta functions of Riemann surfaces. However, the explicit formulas obtained in this way fail to answer such natural topological questions as whether a given singular solution is stable or not. In the present paper, the problem of stability for equilibrium points is considered, and it is shown that this problem can also be approached by means of algebraic geometry.