### Book

## Graph-Theoretic Concepts in Computer Science, 43rd International Workshop, WG 2017, Eindhoven, The Netherlands, June 21-23, 2017, Revised Selected Papers

This book constitutes the revised selected papers of the 43rd International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2017, held in Eindhoven, The Netherlands, in June 2017.

The 31 full papers presented in this volume were carefully reviewed and selected

from 71 submissions. They cover a wide range of areas, aiming at connecting theory and applications by demonstrating how graph-theoretic concepts can be applied in various areas of computer science. Another focus is on presenting recent results and on identifying and exploring promising directions of future research.

Weighted independent domination is an NP-hard graph problem, which remains computationally intractable in many restricted graph classes. Only few examples of classes are available, where the problem admits polynomial-time solutions. In the present paper, we extend the short list of such classes with two new examples.

A hypergraph is Sperner if no hyperedge contains another one. A Sperner hypergraph is equilizable (resp., threshold) if the characteristic vectors of its hyperedges are the (minimal) binary solutions to a linear equation (resp., inequality) with positive coefficients. These combinatorial notions have many applications and are motivated by the theory of Boolean functions and integer programming. We introduce in this paper the class of 1-Sperner hypergraphs, defined by the property that for every two hyperedges the smallest of their two set differences is of size one. We characterize this class of Sperner hypergraphs by a decomposition theorem and derive several consequences from it. In particular, we obtain bounds on the size of 1-Sperner hypergraphs and their transversal hypergraphs, show that the characteristic vectors of the hyperedges are linearly independent over the reals, and prove that 1-Sperner hypergraphs are both threshold and equilizable. The study of 1-Sperner hypergraphs is motivated also by their applications in graph theory, which we present in a companion paper.

The approaches based on applying of metamodeling and domain-specific languages are widely used in software engineering. There are many different tools for creating visual domain-specific modeling languages with a possibility of determining user’s graphical notations. However, these tools possess disadvantages. The article presents an approach to the development of language workbench that allows to eliminate some restrictions of existing DSM-platforms. The MetaLanguage system is designed for creation of visual dynamic adaptable domain-specific modeling languages and for models construction with these languages. It allows executing transformations of the created models in various textual and graphical notations. Basic metalanguage constructions of this system are described. The formal description of modeling languages metamodel used in MetaLanguage is given. The architecture of MetaLanguage toolkit is presented.

In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and *p*-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the 'Lifshitz singularity' emerging in the one-dimensional localization, while the spectral statistics of *p*-branching star-like graphs is less universal, being strongly dependent on *p*. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However, the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, reflecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of an ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.

The paper proposes morphological models for the analysis of complex electronic systems quality criterion. The reason for resorting to morphological models is the need to increase attention to improving the quality and reliability of electronic systems in the early design stages. At the same time, many difficulties of mathematical modeling of the investigated heterogeneous physical processes occurring in electronic systems are solved. In this paper, the unification of the notation and the image of components based on analogies of mathematical descriptions. In linear synthesis morphological models in the form of connection of multipolar systems are offered. But they allow you to explore the electrical, mechanical and thermal processes only in linear approximation. In contrast to this representation, the paper also proposes unified view of morphological models in the form of a hypergraph, which will cover nonlinear cases.

We introduce a new series Rk, k = 2, 3, 4, ..., of integer valued weight systems. The value of the weight system Rk on a chord diagram is a signed number of cycles of even length 2k in the intersection graph of the diagram.Weshow that this value depends on the intersection graph only. We check that for small orders of the diagrams, the value of the weight system Rk on a diagram of order exactly 2k coincides with the coefficient of ck in the value of the sl2-weight system on the projection of the diagram to primitive elements.

In this article we use the modular decomposition technique for exact solving the weighted maximum clique problem. Our algorithm takes the modular decomposition tree from the paper of Tedder et. al. and finds solution recursively. Also, we propose algorithms to construct graphs with modules. We show some interesting results, comparing our solution with Ostergards algorithm on DIMACS benchmarks and on generated graphs.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.