• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 269
Sort:
by name
by year
Article
Самовол В. С. Математические заметки. 2010. Т. 88. № 2. С. 275-287.

In a neighborhood of a singular point, we consider autonomous systems of ordinary differential equations for which one eigenvalue of the matrix of the linear part is zero and the remaining eigenvalues do not belong to the imaginary axis. We prove that the problem of finitely smooth equivalence can be solved for such systems by using finite segments of the Taylor series of their right-hand sides.

Added: Jan 23, 2013
Article
Шварцман О. В. Математические заметки. 2009. Т. 86. № 3. С. 478-480.
Added: Jan 20, 2010
Article
Самовол В. С. Математические заметки. 2012. Т. 92. № 6. С. 912-927.

In a neighborhood of a singular point, we consider autonomous systems of ordinary differential equations such that the matrix of the linearized system has two pure imaginary eigenvalues, all other eigenvalues lying outside the imaginary axis. The problem of local finitely smooth equivalence of such systems is studied.

Added: Dec 13, 2012
Article
Шур М. Г. Математические заметки. 2008. Т. 84. № 1. С. 117-124.
Added: Mar 29, 2013
Article
Маслов В. П. Математические заметки. 2011. Т. 89. № 2. С. 272-284.

In this paper, we construct a new distribution corresponding to a real noble gas as well as the equation of state for it.

Added: Apr 12, 2012
Article
Лобанов С. Г. Математические заметки. 2008. Т. 83. № 5. С. 705-714.
Added: Mar 19, 2009
Article
Чистяков Д. С., Любимцев О. В. Математические заметки. 2015. Т. 98. № 6. С. 898-906.
Added: Oct 10, 2017
Article
Нестеренко А. Ю. Математические заметки. 2009. Т. 86. № 4. С. 588-600.
Added: Mar 3, 2013
Article
Артамонов С. Ю. Математические заметки. 2016. Т. 99. № 6. С. 928-931.
Added: May 23, 2017
Article
Рудаков А. Н., Шафаревич И. Математические заметки. 1967. Т. 2. С. 439-454.
Added: Jun 22, 2010
Article
Тюрин Н. А., Белёв С. А. Математические заметки. 2010. Т. 87. № 1. С. 48-59.
Added: Oct 18, 2012
Article
Р.С. Авдеев Математические заметки. 2013. Т. 94. № 1. С. 22-35.

For an arbitrary connected solvable spherical subgroup H of a connected semisimple algebraic group G, we compute the group N_G(H), the normalizer of H in G. Thereby we complete a classification of all (not necessarily connected) solvable spherical subgroups in semisimple algebraic groups.

Added: Feb 25, 2014
Article
Вьюгин И. В., Солодкова Е., Shkredov I. D. Математические заметки. 2016.

The new bound of additive energy of Heilbronn's subgroup is obtained in the paper.

Added: Aug 30, 2016
Article
Деменко В. Н. Математические заметки. 2000. Т. 67. № 3. С. 343-354.
Added: Mar 16, 2013
Article
Захарова Е. В. Математические заметки. 2007. Т. 81. № 5. С. 703-706.
Added: Jan 31, 2010
Article
Чеботарев А. М., Радионов А. А., Тлячев Т. В. Математические заметки. 2012. Т. 92. № 5. С. 762-777.

We consider the multimode generalization of the normally ordered factorization formula of squeezings. This formula allows us to establish relationships between various representations of squeezed states, to calculate partial traces, mean values, and variations. The main results are expressed in terms of the matrix representation of canonical transformations which is a convenient and numerically stable mathematical tool. Explicit representations are given for the inner product and the composition of generalized multimode squeezings. Explicitly solvable evolution problems are considered.

Added: Jan 15, 2014