• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 167
Sort:
by name
by year
Article
Бычков Б. С. Функциональный анализ и его приложения. 2019. Т. 53. № 1. С. 16-30.
Added: Oct 20, 2016
Article
Адлер Д. В. Функциональный анализ и его приложения. 2020. Т. 54. № 3. С. 8-25.

We prove the polynomiality of the bigraded ring $J_{*,*}^{w, W}(F_4)$ of weak Jacobi forms for the root system $F_4$ which are invariant with respect to the corresponding Weyl group. This work is a continuation of the joint article with V.A. Gritsenko, where the structure of algebras of the weak Jacobi forms related to the root systems of $D_n$ type for $2\leqslant n \leqslant 8$ was studied.

Added: Nov 6, 2020
Article
Филимонов Д. А., Клепцын В. А. Функциональный анализ и его приложения. 2012. Т. 46. № 3. С. 38-61.
Added: Nov 14, 2013
Article
Махлин И. Ю. Функциональный анализ и его приложения. 2016. Т. 50. № 2. С. 20-30.
Added: Sep 5, 2016
Article
Шварцман О. В., Бернштейн И. Функциональный анализ и его приложения. 1978. Т. 12. С. 79-81.
Added: Jun 4, 2010
Article
Ольшанский Г. И. Функциональный анализ и его приложения. 2018. Т. 52. № 4. С. 86-88.

The Thoma simplex Ω is an infinite-dimensional space, a kind of dual object to the infinite symmetric group. The z-measures are probability measures on Ω depending on three continuous parameters. One of them is the parameter of the Jack symmetric functions, and in the limit as it goes to 0, the z-measures turn into the Poisson–Dirichlet distributions. The definition of the z-measures is somewhat implicit. We show that the topological support of any nondegenerate z-measure is the whole space Ω.

Added: May 26, 2019
Article
В.А. Васильев Функциональный анализ и его приложения. 1989. Т. 23. № 4. С. 24-36.
Added: Dec 30, 2017
Article
Гусейн-Заде С. М. Функциональный анализ и его приложения. 2018. Т. 52. № 4. С. 72-85.

The Euler characteristic is the only additive topological invariant for spaces of certain sort, in particular, for manifolds with certain finiteness properties. A generalization of the notion of a manifold is the notion of a V-manifold. We discuss a universal additive topological invariant of V-manifolds, the universal Euler characteristic. It takes values in the ring freely generated (as a Z-module) by isomorphism classes of finite groups. We also consider the universal Euler characteristic on the class of locally closed equivariant unions of cells in equivariant CW-complexes. We show that it is a universal additive invariant satisfying a certain “induction relation.” We give Macdonald-type identities for the universal Euler characteristic for V-manifolds and for cell complexes of the described type.

Added: Oct 27, 2020
Article
Рыбников Г. Л. Функциональный анализ и его приложения. 1992. Т. 26. № 1. С. 76-78.
Added: Jun 4, 2010
Article
Хорошкин А. С., Доценко В. В. Функциональный анализ и его приложения. 2007. Т. 41. № 1. С. 1-22.

We compute dimensions of the components for the operad of two compatible brackets and for the bihamiltonian operad. We also obtain character formulas for the representations of the symmetric groups and the SL2 group in these spaces.      Recall that the series of characters of symmetric groups form a symmetric function. SL2 grading gives an additional parameter to these functions. First, we show how Koszul duality implies the relation for symmetric functions. Namely, the symmetric functions corresponding to the characters of Koszul dual operads should be inverse to each other (up to minor correction of signs) with respect to the plethystic composition. Second, we present a formula for the inverse symmetric function generalizing the Moebius inversion formula.      We proved that the operad of two compatible Lie brackets is Koszul. The koszul dual operad has trivial action of symmetric groups and, therefore, it is easy to write the corresponding symmetric function. Then we use our inversion formula and simplify the result in order to find particular characters for the action of symmetric group.      I insist that the method we suggest is quite general and may be applied in many other situations.

Added: Sep 29, 2013
Article
Бухштабер В. М., Нетай И. В. Функциональный анализ и его приложения. 2015. Т. 49. № 4. С. 1-17.
Added: Oct 19, 2015
Article
Стояновский А., Фейгин Б. Л. Функциональный анализ и его приложения. 1994. Т. 28. № 1. С. 68-90.
Added: Jun 1, 2010
Article
Фейгин Б. Л. Функциональный анализ и его приложения. 1975. Т. 9. № 4. С. 49-56.
Added: Jun 2, 2010
Article
Мутафян Г. С., Фейгин Б. Л. Функциональный анализ и его приложения. 2014. Т. 48. № 1. С. 46-60.
An expression for the generating function of plane partitions ai,j subject to the con-straints am, n=0 and ai,j≥kj,1≤j≤n, which is the character of an irreducible representation of the quantum toroidal algebra gl1ˆˆ, is obtained.
Added: Nov 7, 2014
Article
Махлин И. Ю. Функциональный анализ и его приложения. 2015. Т. 49. № 1. С. 18-30.
Added: Sep 29, 2014
Article
Буфетов А. И. Функциональный анализ и его приложения. 2012. Т. 46. № 2. С. 3-16.

The asymptotics of the first rows and columns of random Young diagrams corresponding to extremal characters of the infinite symmetric group is studied. We consider rows and columns with linear growth in $n$, the number of boxes of random diagrams, and prove the central limit theorem for them in the case of distinct Thoma parameters. We also establish a more precise statement relating the growth of rows and columns of Young diagrams to a simple independent random sampling model. 

Added: Oct 11, 2013
Article
Гончарук Н. Б. Функциональный анализ и его приложения. 2012. Т. 46. № 1. С. 13-30.
Added: Feb 18, 2013
Article
Одесский А., Feigin B. L. Functional Analysis and Its Applications. 1989. Vol. 23. No. 3. P. 45-54.
Added: Jun 2, 2010
Article
Одесский А., Фейгин Б. Л. Функциональный анализ и его приложения. 1995. Т. 29. № 2. С. 9-21.
Added: Jun 1, 2010
Article
Одесский А., Фейгин Б. Л. Функциональный анализ и его приложения. 1997. Т. 31. № 3. С. 57-70.
Added: Jun 1, 2010