• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 289
Sort:
by name
by year
Article
Tretyachenko Y., Chistyakov V. Mathematical notes. 2008. Vol. 84. No. 3. P. 396-406.
Added: Mar 14, 2009
Article
Akbarov S. S. Mathematical notes. 2018. Vol. 104. No. 3. P. 465-468.

In [1] and [3], the author described the stereotype approximation property, which is an analog of the classical approximation property transferred to the category Ste of stereotype spaces. It was noticed in [3] that, for a stereotype space X, the stereotype approximation condition is formally stronger than the classical approximation condition (although, up to now, it remains unclear whether or not these conditions are equivalent). For this reason, the question of what particular spaces in the standard package used in functional analysis have the stereotype approximation property is quite difficult (the only exception is the case where the space has a topological basis in some reasonable sense). In this paper, we prove the following fact concerning the stereotype group algebras C*(G) (defined in [2] and [3]).

Added: Oct 21, 2018
Article
Grines V., Levchenko Y., Pochinka O. Mathematical notes. 2015. Vol. 97. No. 1-2. P. 304-306.
Added: Oct 8, 2015
Article
Schwarzman O. Mathematical notes. 2009. Vol. 86. No. 3-4. P. 451-454.
Added: Feb 9, 2010
Article
Maslov V. P. Mathematical notes. 2016. Vol. 100. No. 5. P. 886-889.
Added: Feb 21, 2017
Article
Maslov V. P. Mathematical notes. 2017. Vol. 102. No. 6. P. 824-835.

The author constructs his thermodynamics on the following two “first principles”: the partition theory of integers and the notion of Earth gravity. On the basis of number theory, equivalence classes in mesoscopy and soft condensates in the partition theory of integers are considered. The self-consistent equation obtained by the author on the basis of Gentile statistics is used to describe the effect of energy accumulation at the moment of transition of the boson branch of the partition of a number to the fermion branch. The branch point in the transition from bosons to fermions is interpreted as an analog of a jump of the spin.

Added: Nov 18, 2018
Article
Maslov V. Mathematical notes. 2012. Vol. 91. No. 5. P. 697-703.

We study the case where the values of random variables increase without bound.

Added: Jan 17, 2013
Article
Maslov V. P. Mathematical notes. 2013. Vol. 94. No. 5. P. 722-813.

In the present paper, we describe an approach to thermodynamics that does not involve Bogolyubov chains or Gibbs ensembles. We present isotherms, isochores, and isobars of various pure gases, as well as binodals, i.e., lines along which gas becomes liquid, and spinodals (endpoints of isotherms). We study supercritical phenomena for values of temperature and pressure above the critical ones. A lot of attention is paid to the region of negative pressures. The superfluid component for supercritical phenomena is described, as well as the thermodynamics of nanostructures and superfluidity in nanotubes.

Added: Dec 23, 2013
Article
Akbarov S. S. Mathematical notes. 1989. Vol. 45. No. 1. P. 132-134.
Added: Sep 23, 2016
Article
Maslov V. P. Mathematical notes. 2014. Vol. 96. No. 6. P. 977-982.

 We give a geometric interpretation of the thermodynamic potential,  free and internal energy, and enthalpy in terms of a Lagrangian manifold in the phase space of pairs (T, -S), (-mu, N), and (P,V) of intensive and extensive variables.  The Lagrangian manifold is viewed as the dequantization of the tunnel canonical operator.  With this approach, the critical point is a point where the equilibrium quasi-static process described by the Carath\'eodory axioms is violated.  For a hard liquid with negative pressure, we present a model of a multi-modulus medium.

Added: Dec 24, 2014
Article
Maslov V. P., Dobrokhotov S., Nazaikinskii V. Mathematical notes. 2016. Vol. 100. No. 5. P. 828-834.

We develop the recent research [1] and introduce the notions of volume and entropy in abstract analytic number theory. The introduction of negative numbers in the generalized partition problem, together with the meaning of such a generalization in some applications of the theory, is discussed.

Added: Feb 21, 2017
Article
Lobanov S. G. Mathematical notes. 2008. Vol. 83. No. 5. P. 643-651.
Added: Mar 19, 2009
Article
Danilov V. Mathematical notes. 2020. Vol. 108. No. 1. P. 29-38.

In this note, we present an unusual picture of interaction of singularities for pressureless gas dynamics.

Added: Aug 18, 2020
Article
Chistyakov V. Mathematical notes. 1995. Vol. 58. No. 3. P. 1005-1009.
Added: Jan 20, 2010
Article
Romanov A. Mathematical notes. 2007. Vol. 82. No. 6. P. 806-815.
Added: Nov 25, 2012
Article
Чистяков Д. С. Математические заметки. 2013. Т. 94. № 5. С. 770-776.
Added: Oct 10, 2017
Article
Чистяков Д. С. Математические заметки. 2010. Т. 87. № 3. С. 412-416.
Added: Oct 10, 2017
Article
Чистяков Д. С. Математические заметки. 2012. Т. 91. № 6. С. 934-941.
Added: Oct 10, 2017
Article
Тюрин Н. А. Математические заметки. 1999. Т. 65. № 3. С. 420-428.
Added: Oct 1, 2010
Article
В. Л. Попов Математические заметки. 2009. Т. 86. № 6. С. 947-949.
Added: Mar 16, 2013
Article
Богачев Н., Перепечко А.Ю. Математические заметки. 2018. Т. 103. № 5. С. 769-773.

In this paper, we present an original implementation of Vinberg’s algorithm for arbitrary hyperbolic lattices subject to no constraints

Added: Sep 26, 2019