• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 209
Sort:
by name
by year
Article
Зотов М. Г. Автоматика и телемеханика. 2015. № 2. С. 61-72.

. Abstract—We show the graphical and algebraic counterparts of Kharitonov’s theorem constructed on the foundation of the robust Nyquist criterion. The graphical counterpart is different from Tsypkin–Polyak hodograph.

Added: Mar 20, 2015
Article
Лазарев А. А. Автоматика и телемеханика. 2007. № 4. С. 13-23.

Consideration was given to a graphic realization of the method of dynamic programming. Its concept was demonstrated by the examples of the partition and knapsack problems. The proposed method was compared with the existing algorithms to solve these problems.

Added: Nov 23, 2012
Article
Субочев А. Н. Автоматика и телемеханика. 2010. № 1. С. 130-143.
Added: Sep 28, 2012
Article
Афанасьев В. Н. Автоматика и телемеханика. 2015. № 1. С. 3-20.

We formulate the optimal control problem for a class of nonlinear objects that can be represented as objects with linear structure and state-dependent coefficients. We assume that the system is subjected to uncontrollable bounded disturbances. The linear structure of the transformed nonlinear system and the quadratic quality functional let us, in the optimal control synthesis, to pass from Hamilton–Jacobi–Isaacs equations to a state-dependent Riccati Equation. Control of nonlinear uncertain object in the problem of moving along a given trajectory is considered using the theory of differential games. We also give an example that illustrates how theoretical results of this work can be used.

Added: Mar 17, 2015
Article
Афанасьев В. Н. Автоматика и телемеханика. 2014.
An optimal control problem was formulated for a class of nonlinear systems which can be presented by a system with a linear structure and state-depended coefficients (SDC). The system be under the influence of uncontrollable disturbance is supposed. In this paper, the problem of control uncertain nonlinear object to the desired trajectory is considered using the theory of differential games. Parameters of the suboptimal controller are found from the solutions of two differential equations with given initial conditions and the state-depended coefficients. In the paper we propose a method for the construction of guaranteeing control that does not require the solution of nonlinear differential equations with state depending coefficients and provide an acceptable transient response
Added: Oct 29, 2014
Article
Миркин Б. Г., Мандель И. Автоматика и телемеханика. 1987. № 2.
Added: Oct 20, 2010
Article
Жукова Г. Н., Ульянов М. В., Фомичев М. И. Автоматика и телемеханика. 2019. № 11. С. 155-172.

We present the results of a comparative statistical analysis of the time for solving the asymmetric traveling salesman problem (ATSP) with the branch-and-bound method (without precalculation of the tour) and with a hybrid method. The hybrid method consists of the Lin-Kernighan-Helsgaun approximate algorithm used to calculate the initial tour and the branch-and-bound method. We show that using an approximate solution found with the Lin-Kernighan-Helsgaun algorithm can signi cantly reduce the search time for the exact solution to the traveling salesman problem using the branch-and-bound method for problems from a certain class. We construct a prediction of the search time for the exact solution by the branch-and-bound method and by the hybrid algorithm. A computational experiment has shown that the proportion of tasks solved faster by the hybrid algorithm than by the branch-and-bound method grows with increasing problem dimension.

Added: Nov 10, 2019
Article
Лазарев А. А., Гафаров Е. Р. Автоматика и телемеханика. 2008. № 12. С. 86-104.
Consideration was given to the resource-constrained project scheduling problem and its special cases. The existing lower estimates of the objective function—minimization of the project time—were compared. It was hypothesized that the optimal value of the objective function of the nonpreemptive resource-constrained project scheduling problem is at most twice as great as that of the objective function with preemption. The hypothesis was proved for the cases of parallel machines and no precedence relation
Added: Nov 23, 2012
Article
Шварц Д. А. Автоматика и телемеханика. 2011. № 1. С. 130-140.
Added: Sep 19, 2012
Article
Хоров Е. М., Иванов А. С., Ляхов А. И. Автоматика и телемеханика. 2017. Т. 78. № 11. С. 48-63.

Для повышения надежности доставки данных в сетях Wi-Fi станции могут резервировать для своих передач периодические интервалы времени одинаковой длительности, в течение которых они имеют право передавать, а соседние с ними станции такого права не имеют. При этом возникает задача выбора параметров резервируемых интервалов, которые гарантировали бы выполнение требований к качеству обслуживания передаваемых данных при наименьшем объеме зарезервированного канального времени. Рассматривается процесс передачи данных в периодических интервалах с использованием политики блочного квитирования, позволяющей сократить накладные расходы за счет квитирования множества пакетов с помощью одного служебного сообщения. Предлагается метод математического моделирования такой передачи.

Added: Feb 8, 2018
Article
Афанасьев В. Н., Каперко А. Ф., Колюбин В. А. и др. Автоматика и телемеханика. 2017. № 3. С. 15-33.
Added: Sep 28, 2016
Article
Лазарев А. А., Архипов Д. И. Автоматика и телемеханика. 2016. № 4. С. 134-152.
Added: Aug 3, 2016
Article
Мартынов Г. В. Автоматика и телемеханика. 2010. № 7. С. 70-82.
Added: Mar 23, 2014
Article
Лазарев А. А. Автоматика и телемеханика. 2014. № 7. С. 14-16.
Added: Sep 8, 2014
Article
Чеботарев П. Ю., Агаев Р. П. Автоматика и телемеханика. 2017. № 1. С. 106-120.

The paper studies the problem of achieving consensus in multi-agent systems in the case where the dependency digraph Γ has no spanning in-tree. We consider the regularization protocol that amounts to the addition of a dummy agent (hub) uniformly connected to the agents. The presence of such a hub guarantees the achievement of an asymptotic consensus. For the “evaporation” of the dummy agent, the strength of its influences on the other agents vanishes, which leads to the concept of latent consensus. We obtain a closed-form expression for the consensus when the connections of the hub are symmetric; in this case, the impact of the hub upon the consensus remains fixed. On the other hand, if the hub is essentially influenced by the agents, whereas its influence on them tends to zero, then the consensus is expressed by the scalar product of the vector of column means of the Laplacian eigenprojection of Γ and the initial state vector of the system. Another protocol, which assumes the presence of vanishingly weak uniform background links between the agents, leads to the same latent consensus.

Added: Oct 22, 2018