• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 117
Sort:
by name
by year
Article
Пирковский А. Ю. Математический сборник. 2008. Т. 199. № 5. С. 45-80.
Added: Sep 30, 2010
Article
Р. А. Девятов Математический сборник. 2011. Т. 202. № 10. С. 31-54.

A family of neighbourly polytopes in R2d with N=2d+4 vertices is constructed. All polytopes in the family have a planar Gale diagram of a special type, namely, with exactly d+3 black points in convex position. These Gale diagrams are parametrized by 3-trees (trees with a certain additional structure). For all polytopes in the family, the number of faces of dimension m containing a given vertex A depends only on d and m.

Added: Jun 28, 2012
Article
Аржанцев И. В. Математический сборник. 1999. Т. 190. № 7. С. 3-22.
Added: Jul 8, 2014
Article
Р.С. Авдеев, Петухов А. В., Петухов А. В. Математический сборник. 2014. Т. 205. № 9. С. 3-48.

For every finite-dimensional vector space V and every V-flag variety X we list all connected reductive subgroups in GL(V) acting spherically on X.

Added: Oct 22, 2014
Article
Елагин А. Д. Математический сборник. 2012. Т. 203. № 5. С. 33-64.

We put forward a method for constructing semiorthogonal decompositions of the derived category of G-equivariant sheaves on a variety X under the assumption that the derived category of sheaves on X admits a semiorthogonal decomposition with components preserved by the action of the group G on X. This method is used to obtain semiorthogonal decompositions of equivariant derived categories for projective bundles and blow-ups with a smooth centre as well as for varieties with a full exceptional collection preserved by the group action. Our main technical tool is descent theory for derived categories.

Added: Jul 27, 2012
Article
Кантонистова Е. О. Математический сборник. 2016. Т. 207. № 3. С. 47-92.
Added: Oct 30, 2017
Article
Богачев В. И., Колесников А. В., Медведев К. В. Математический сборник. 2005. Т. 196. № 3. С. 3-30.
Added: Mar 26, 2013
Article
Богачев В. И., Медведев К. В., Колесников А. В. Математический сборник. 2005. № 196(3). С. 3-30.
Added: Mar 23, 2011
Article
Тихомиров А. С., Пенков И. Б. Математический сборник. 2011. Т. 202. № 1. С. 65-104.
Added: Oct 21, 2014
Article
Рудаков А. Н. Математический сборник. 1989. Т. 180. № 2. С. 187-194.
Added: Jun 22, 2010
Article
А.И. Буфетов Математический сборник. 2014. Т. 205. № 2. С. 39-70.

The aim of this paper is to prove ergodic decomposition theorems for probability measures which are quasi-invariant under Borel actions of inductively compact groups as well as for σ-finite invariant measures. For infinite measures the ergodic decomposition is not unique, but the measure class of the decomposing measure on the space of projective measures is uniquely defined by the initial invariant measure.

Added: Oct 23, 2014