• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 592
Sort:
by name
by year
Article
Vlassov V. The Lancet. 2016. Vol. 388. No. 10053. P. 1-37.

Background The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) provides an up to date synthesis of the evidence on risk factor exposure and the burden of disease attributable to these risks. By providing national and subnational assessments spanning 25 years, the GBD 2015 can help inform debates on the importance of addressing different risks in different contexts. Methods We used the comparative risk assessment (CRA) framework developed for previous iterations of the GBD study to estimate attributable deaths, DALYs, and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks over the period 1990 to 2015. The GBD 2015 study included 388 risk-outcome pairs which met World Cancer Research Fund-defined criteria for convincing or probable evidence. Relative risk estimates were extracted from published and unpublished randomised controlled trials, cohorts, and pooled cohorts. Risk exposures were estimated based on published studies, household surveys, census data, satellite data, and other sources. Statistical models were used to pool data from different sources, adjust for bias in the data, and incorporate explanatory covariates. We developed a metric that allows comparisons of exposure across risk factors – the summary exposure value (SEV) – which is scaled so that 100% is the entire population at maximum risk, and 0% is everyone at lowest risk. Using the counterfactual scenario of theoretical minimum risk level (TMREL) – the level for a given risk that could minimise population level risk if achieved – we estimated the portion of the burden (deaths and DALYs) that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterized how risk exposures change as countries  move through the development continuum. GBD 2015 follows the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER), and provides comprehensive and detailed information for the data sources, estimation methods, computational tools, and statistical analysis used to generate estimates of attributable burden. Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting and smoking fell more than 25%. Global exposure for several occupational risks, high body mass index, drug use and ambient air pollution increased more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 58.0% (56.9-59.0%) of global deaths and 41.3% (39.9-42.9%) of DALYs; the largest fraction of  global DALYs was attributable to behavioural (30.3% [28.6-32.0%]). In 2015, the 10 largest Level 3 risks in terms of attributable DALYs at the global level were, in order: high systolic blood pressure (9.3% [8.3-10.3%] of global DALYs), smoking (6.0% [5.3-6.8%]), high fasting plasma glucose (5.8% [5.3-6.4%]), high body-mass index (4.9% [3.5-6.4%]), childhood undernutrition 4.6% [4.1-5.1%]), ambient particular matter (4.2% [3.6-4.8%]), high total cholesterol (3.6% [3- 4.3%]), household air pollution (3.5% [2.6-4.4%]), alcohol use (3.5% [3.1-3.8%]) and diets high in sodium (3.4% [2.0-5.3%]).Decomposition analysis showed that from 1990 to 2015 the number of attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and unsafe water, and household air pollution but most of these declines were driven by reductions in risk-deleted DALY rates and not reductions in exposure. For a wide range of risks, increases in attributable burden were driven by population growth and aging exceeding reductions from risk-deleted DALY rates with exposure change having only a minimal contribution. Rising exposure has contributed to notable increases in attributable DALYs from high body-mass index, high fasting plasma glucose, occupational carcinogens, and drug use. Our assessments of the relationships between increasing development, measured using the Sociodemographic Index, showed that some environmental risks and childhood undernutrition decline steadily with development while a number of risks like low physical activity, high body-mass index, high fasting plasma glucose, smoking and others increase with development until the highest quintile. At the country level, metabolic risks such as high BMI and high fasting plasma glucose increasingly emerged as the leading risk factors for attributable DALYs in 2015. Nonetheless, regional risk profiles showed sizeable heterogeneity, with smoking still ranked among the leading five risk factors for attributable DALYs in 140 countries, and childhood underweight and unsafe sex enduring as primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks such as water, sanitation, and household air pollution have contributed to declines in critical infectious diseases such as diarrhoeal diseases. Many risks do not appear to change as countries move through the development continuum and have not played a major role in trends of the last 25 years. Several key risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, are increasing and contributing to rising burden from some conditions; nevertheless these risks provide opportunities for intervention. Some highly preventable risks such as smoking remain major causes of attributable DALYs even as exposure is declining. Public policy needs to pay careful attention to the risks that are both major contributors to global burden and are increasing

Added: Aug 20, 2016
Article
Vlassov V. The Lancet. 2017. Vol. 390. No. 10100. P. 1345-1422.

Background

The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of risk factor exposure and attributable burden of disease. By providing estimates over a long time series, this study can monitor risk exposure trends critical to health surveillance and inform policy debates on the importance of addressing risks in context.

Methods

We used the comparative risk assessment framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2016. This study included 481 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk (RR) and exposure estimates from 22 717 randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources, according to the GBD 2016 source counting methods. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. Finally, we explored four drivers of trends in attributable burden: population growth, population ageing, trends in risk exposure, and all other factors combined.

Findings

Since 1990, exposure increased significantly for 30 risks, did not change significantly for four risks, and decreased significantly for 31 risks. Among risks that are leading causes of burden of disease, child growth failure and household air pollution showed the most significant declines, while metabolic risks, such as body-mass index and high fasting plasma glucose, showed significant increases. In 2016, at Level 3 of the hierarchy, the three leading risk factors in terms of attributable DALYs at the global level for men were smoking (124·1 million DALYs [95% UI 111·2 million to 137·0 million]), high systolic blood pressure (122·2 million DALYs [110·3 million to 133·3 million], and low birthweight and short gestation (83·0 million DALYs [78·3 million to 87·7 million]), and for women, were high systolic blood pressure (89·9 million DALYs [80·9 million to 98·2 million]), high body-mass index (64·8 million DALYs [44·4 million to 87·6 million]), and high fasting plasma glucose (63·8 million DALYs [53·2 million to 76·3 million]). In 2016 in 113 countries, the leading risk factor in terms of attributable DALYs was a metabolic risk factor. Smoking remained among the leading five risk factors for DALYs for 109 countries, while low birthweight and short gestation was the leading risk factor for DALYs in 38 countries, particularly in sub-Saharan Africa and South Asia. In terms of important drivers of change in trends of burden attributable to risk factors, between 2006 and 2016 exposure to risks explains an 9·3% (6·9–11·6) decline in deaths and a 10·8% (8·3–13·1) decrease in DALYs at the global level, while population ageing accounts for 14·9% (12·7–17·5) of deaths and 6·2% (3·9–8·7) of DALYs, and population growth for 12·4% (10·1–14·9) of deaths and 12·4% (10·1–14·9) of DALYs. The largest contribution of trends in risk exposure to disease burden is seen between ages 1 year and 4 years, where a decline of 27·3% (24·9–29·7) of the change in DALYs between 2006 and 2016 can be attributed to declines in exposure to risks.

Interpretation

Increasingly detailed understanding of the trends in risk exposure and the RRs for each risk-outcome pair provide insights into both the magnitude of health loss attributable to risks and how modification of risk exposure has contributed to health trends. Metabolic risks warrant particular policy attention, due to their large contribution to global disease burden, increasing trends, and variable patterns across countries at the same level of development. GBD 2016 findings show that, while it has huge potential to improve health, risk modification has played a relatively small part in the past decade.

 

Added: Sep 15, 2017
Article
Vlassov V. The Lancet Respiratory Medicine. 2017. Vol. 5. No. 9. P. 691-706.

BACKGROUND:

Chronic obstructive pulmonary disease (COPD) and asthma are common diseases with a heterogeneous distribution worldwide. Here, we present methods and disease and risk estimates for COPD and asthma from the Global Burden of Diseases, Injuries, and Risk Factors (GBD) 2015 study. The GBD study provides annual updates on estimates of deaths, prevalence, and disability-adjusted life years (DALYs), a summary measure of fatal and non-fatal disease outcomes, for over 300 diseases and injuries, for 188 countries from 1990 to the most recent year.

METHODS:

We estimated numbers of deaths due to COPD and asthma using the GBD Cause of Death Ensemble modelling (CODEm) tool. First, we analysed data from vital registration and verbal autopsy for the aggregate category of all chronic respiratory diseases. Subsequently, models were run for asthma and COPD relying on covariates to predict rates in countries that have incomplete or no vital registration data. Disease estimates for COPD and asthma were based on systematic reviews of published papers, unpublished reports, surveys, and health service encounter data from the USA. We used the Global Initiative of Chronic Obstructive Lung Disease spirometry-based definition as the reference for COPD and a reported diagnosis of asthma with current wheeze as the definition of asthma. We used a Bayesian meta-regression tool, DisMod-MR 2.1, to derive estimates of prevalence and incidence. We estimated population-attributable fractions for risk factors for COPD and asthma from exposure data, relative risks, and a theoretical minimum exposure level. Results were stratified by Socio-demographic Index (SDI), a composite measure of income per capita, mean years of education over the age of 15 years, and total fertility rate.

FINDINGS:

In 2015, 3·2 million people (95% uncertainty interval [UI] 3·1 million to 3·3 million) died from COPD worldwide, an increase of 11·6% (95% UI 5·3 to 19·8) compared with 1990. There was a decrease in age-standardised death rate of 41·9% (37·7 to 45·1) but this was counteracted by population growth and ageing of the global population. From 1990 to 2015, the prevalence of COPD increased by 44·2% (41·7 to 46·6), whereas age-standardised prevalence decreased by 14·7% (13·5 to 15·9). In 2015, 0·40 million people (0·36 million to 0·44 million) died from asthma, a decrease of 26·7% (-7·2 to 43·7) from 1990, and the age-standardised death rate decreased by 58·8% (39·0 to 69·0). The prevalence of asthma increased by 12·6% (9·0 to 16·4), whereas the age-standardised prevalence decreased by 17·7% (15·1 to 19·9). Age-standardised DALY rates due to COPD increased until the middle range of the SDI before reducing sharply. Age-standardised DALY rates due to asthma in both sexes decreased monotonically with rising SDI. The relation between with SDI and DALY rates due to asthma was attributed to variation in years of life lost (YLLs), whereas DALY rates due to COPD varied similarly for YLLs and years lived with disability across the SDI continuum. Smoking and ambient particulate matter were the main risk factors for COPD followed by household air pollution, occupational particulates, ozone, and secondhand smoke. Together, these risks explained 73·3% (95% UI 65·8 to 80·1) of DALYs due to COPD. Smoking and occupational asthmagens were the only risks quantified for asthma in GBD, accounting for 16·5% (14·6 to 18·7) of DALYs due to asthma.

INTERPRETATION:

Asthma was the most prevalent chronic respiratory disease worldwide in 2015, with twice the number of cases of COPD. Deaths from COPD were eight times more common than deaths from asthma. In 2015, COPD caused 2·6% of global DALYs and asthma 1·1% of global DALYs. Although there are laudable international collaborative efforts to make surveys of asthma and COPD more comparable, no consensus exists on case definitions and how to measure disease severity for population health measurements like GBD. Comparisons between countries and over time are important, as much of the chronic respiratory burden is either preventable or treatable with affordable interventions.

Added: Sep 15, 2017
Article
Vlassov V. The Lancet. 2015. Vol. 386. No. 10009. P. 2145-2191.

Background   The global burden of diseases, injuries and risk factors 2013 study (GBD 2013) seeks to synthesize all available epidemiological data using a coherent measurement framework, standardized estimation methods, and transparent data sources to facilitate comparisons of health loss across causes, age‐sex groups, and geographies and over time. The GBD can be used to generate summary measures such as disability adjusted life years (DALYs) and healthy life expectancy (HALE) that facilitate comparative assessments of broad epidemiological patterns across countries and time. These summary measures can also be used to quantify the component of variation in epidemiology that is related to socio‐ demographic development.   Methods   We used the published GBD 2013 age‐specific mortality, years of life lost (YLLs) and years lived with disability (YLDs) to compute DALYs and HALE for 1990, 1995, 2000, 2005, 2010, and 2013 for 188 countries. HALE was computed using the Sullivan method; 95% uncertainty intervals reflect uncertainty in age‐specific death rates and YLDs per capita for each country, age, sex, and year. DALYs for 306 causes for each country were computed as the sum of YLLs and YLDs; 95% uncertainty intervals reflect uncertainty in YLL and YLD rates. Analysis of variance (ANOVA) using hierarchical regression was applied to DALY rates by cause to decompose variance related to socio‐demographic status, GBD region, country variation within regions, and unexplained.       Findings Life expectancy at birth for the world for both sexes combined increased from 65.3 (65.0‐65.6) in 1990 to 71.5 (71.0‐71.9) in 2013, whereas over the same interval HALE at birth for both sexes combined increased from 56.9 (54.5‐59.1) to 62.3 (59.7‐64.8). Global DALYs numbers, rates and age‐standardized rates for communicable, maternal, neonatal and nutritional causes have been declining from 1990 to 2013. Non‐communicable disease DALY numbers are increasing, DALY rates are nearly constant and age‐ standardized DALYs are declining. From 2005 to 2013, the number of DALYs increased for a large number of specific non‐communicable diseases and for dengue, food borne trematodes and leishmaniasis (although in absolute terms these latter increases were small) and DALYs decreased for nearly all other causes. By 2013, the five leading causes of DALYs were ischemic heart disease, lower respiratory infections, cerebrovascular disease, low back & neck pain, and road injuries. SDS explains more than 50% of the variance for diarrhea, LRI and other common infectious diseases; maternal disorders; neonatal disorders; nutritional deficiencies, and musculoskeletal disorders. SDS explains very little of the variance in DALY rates for HIV/AIDS and tuberculosis; neglected tropical diseases; neoplasms; cardiovascular diseases; chronic respiratory diseases; diabetes, urogenital, blood, and endocrine diseases; and cirrhosis along with self‐harm, interpersonal violence, forces of nature, war and January 25, 2015: Confidential Draft-Do Not Cite or Distribute 2   legal intervention. A predictable shift in burden from YLLs to YLDs is associated with higher SDS driven by declines in YLLs and increases in YLDs from musculoskeletal disorders, neurological disorders and mental and substance abuse disorders. Country specific estimates of life expectancy and HALE show smaller increases in HALE than life expectancy in most countries. Leading causes of DALYs are highly variable across countries. Interpretation Global health is improving.  Population growth and aging drive up numbers of DALYs and crude rates remain relatively constant highlighting that progress in health does not mean less demands on health systems. The epidemiological transition interpreted as the structured change in burden with rising SDS is a useful construct but there is tremendous variation in burden of disease that is not associated with SDS highlighting the need for country‐specific assessments of DALYs and HALE to inform health policy debates.

Added: Aug 21, 2015
Article
Vlassov V. The Lancet. 2016. Vol. 388. No. 10053. P. 1603-1658.

Background

Healthy life expectancy (HALE) and disability-adjusted life-years (DALYs) provide summary measures of health across geographies and time that can inform assessments of epidemiological patterns and health system performance, help to prioritise investments in research and development, and monitor progress toward the Sustainable Development Goals (SDGs). We aimed to provide updated HALE and DALYs for geographies worldwide and evaluate how disease burden changes with development.

Methods

We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2015. We calculated DALYs by summing years of life lost (YLLs) and years of life lived with disability (YLDs) for each geography, age group, sex, and year. We estimated HALE using the Sullivan method, which draws from age-specific death rates and YLDs per capita. We then assessed how observed levels of DALYs and HALE differed from expected trends calculated with the Socio-demographic Index (SDI), a composite indicator constructed from measures of income per capita, average years of schooling, and total fertility rate.

Findings

Total global DALYs remained largely unchanged from 1990 to 2015, with decreases in communicable, neonatal, maternal, and nutritional (Group 1) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). Much of this epidemiological transition was caused by changes in population growth and ageing, but it was accelerated by widespread improvements in SDI that also correlated strongly with the increasing importance of NCDs. Both total DALYs and age-standardised DALY rates due to most Group 1 causes significantly decreased by 2015, and although total burden climbed for the majority of NCDs, age-standardised DALY rates due to NCDs declined. Nonetheless, age-standardised DALY rates due to several high-burden NCDs (including osteoarthritis, drug use disorders, depression, diabetes, congenital birth defects, and skin, oral, and sense organ diseases) either increased or remained unchanged, leading to increases in their relative ranking in many geographies. From 2005 to 2015, HALE at birth increased by an average of 2·9 years (95% uncertainty interval 2·9–3·0) for men and 3·5 years (3·4–3·7) for women, while HALE at age 65 years improved by 0·85 years (0·78–0·92) and 1·2 years (1·1–1·3), respectively. Rising SDI was associated with consistently higher HALE and a somewhat smaller proportion of life spent with functional health loss; however, rising SDI was related to increases in total disability. Many countries and territories in central America and eastern sub-Saharan Africa had increasingly lower rates of disease burden than expected given their SDI. At the same time, a subset of geographies recorded a growing gap between observed and expected levels of DALYs, a trend driven mainly by rising burden due to war, interpersonal violence, and various NCDs.

Interpretation

Health is improving globally, but this means more populations are spending more time with functional health loss, an absolute expansion of morbidity. The proportion of life spent in ill health decreases somewhat with increasing SDI, a relative compression of morbidity, which supports continued efforts to elevate personal income, improve education, and limit fertility. Our analysis of DALYs and HALE and their relationship to SDI represents a robust framework on which to benchmark geography-specific health performance and SDG progress. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform financial and research investments, prevention efforts, health policies, and health system improvement initiatives for all countries along the development continuum.

Added: Oct 13, 2016
Article
Vlassov V. The Lancet. 2014. Vol. 348. No. 9947. P. 1005-1070.

Abstract: Background The Millennium Declaration in 2000 brought special global attention to HIV, tuberculosis and malaria through the formulation of Millennium Development Goal 6 (MDG 6). The Global Burden of Disease 2013 study provides a consistent and comprehensive approach to disease estimation 1990 to 2013, and an opportunity to assess if there has been accelerated progress since the Millennium Declaration. Methods To estimate incidence and mortality for HIV, we used the UNAIDS Spectrum model appropriately modified based on a systematic review of the literature on mortality with and without out antiretroviral therapy (ART). For concentrated epidemics, we calibrated Spectrum models to fit vital registration data corrected for misclassification of HIV deaths. In generalized epidemics, we minimized a loss function to select epidemic curves most consistent with prevalence data and demographic data on all-cause mortality. We analyzed counterfactual scenarios for HIV to assess years of life saved through prevention of mother to child transmission (PMTCT) and anti-retroviral therapy (ART). For tuberculosis, we analyzed vital registration and verbal autopsy data to estimate mortality using cause of death ensemble modeling. We analyzed data on corrected case-notifications, expert opinions on the case-detection rate, prevalence surveys and estimated cause-specific mortality using Bayesian metaregression to generate consistent trends in all parameters. Malaria mortality and incidence were analyzed using an updated cause of death database, a systematic analysis of verbal autopsy validation studies for malaria and recent literature on incidence, drug resistance and coverage of insecticide treated bed nets. Findings Globally in 2013, there were 1.8 million new HIV infections (95% uncertainty interval 1.7 million to 2.1 million), 29.0 million prevalent HIV cases (27.9 to 31.4) and 1.3 million HIV deaths (1.2 to 1.5). At the peak of the epidemic in 2005, HIV caused 1.7 million deaths (1.6 to 1.9). Concentrated epidemics in Latin America and Eastern Europe are substantially smaller than previously estimated. Through interventions including PMTCT and ART, 19.3 million life years have been saved, 68.9% in the developing world. From 2000 to 2011, the ratio of development assistance for health for HIV to years of life saved through intervention was $4,647-$7,137 in the developing world. All-forms tuberculosis (including Individuals who are HIV-positive) incidence, prevalence and death numbers in 2013 were 6.6 million (6.4 to 6.7), 10.1 million (9.8 to 10.4) and 1.4 million (1.3 to 1.5), the same figures in Individuals who are HIV-negative were 6.1 million (6.0 to 6.3), 9.5 million (9.2 to 9.8) and 1.3 million

Added: May 30, 2014
Article
Vlassov V. The Lancet. 2015. Vol. 386. No. 9995. P. 743-800.

Background Up-to-date evidence about levels and trends in disease and injury incidence, prevalence, and years lived with disability (YLDs) is an essential input into global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013), we estimated these quantities for acute and chronic diseases and injuries for 188 countries between 1990 and 2013. Methods Estimates were calculated for disease and injury incidence, prevalence, and YLDs using GBD 2010 methods with some important refinements. Results for incidence of acute disorders and prevalence of chronic disorders are new additions to the analysis. Key improvements include expansion to the cause and sequelae list, updated systematic reviews, use of detailed injury codes, improvements to the Bayesian meta-regression method (DisMod-MR), and use of severity splits for various causes. An index of data representativeness, showing data availability, was calculated for each cause and impairment during three periods globally and at the country level for 2013. In total, 35 620 distinct sources of data were used and documented to calculated estimates for 301 diseases and injuries and 2337 sequelae. The comorbidity simulation provides estimates for the number of sequelae, concurrently, by individuals by country, year, age, and sex. Disability weights were updated with the addition of new population-based survey data from four countries. Findings Disease and injury were highly prevalent; only a small fraction of individuals had no sequelae. Comorbidity rose substantially with age and in absolute terms from 1990 to 2013. Incidence of acute sequelae were predominantly infectious diseases and short-term injuries, with over 2 billion cases of upper respiratory infections and diarrhoeal disease episodes in 2013, with the notable exception of tooth pain due to permanent caries with more than 200 million incident cases in 2013. Conversely, leading chronic sequelae were largely attributable to non-communicable diseases, with prevalence estimates for asymptomatic permanent caries and tension-type headache of 2∙4 billion and 1∙6 billion, respectively. The distribution of the number of sequelae in populations varied widely across regions, with an expected relation between age and disease prevalence. YLDs for both sexes increased from 537∙6 million in 1990 to 764∙8 million in 2013 due to population growth and ageing, whereas the age-standardised rate decreased little from 114∙87 per 1000 people to 110∙31 per 1000 people between 1990 and 2013. Leading causes of YLDs included low back pain and major depressive disorder among the top ten causes of YLDs in every country. YLD rates per person, by major cause groups, indicated the main drivers of increases were due to musculoskeletal, mental, and substance use disorders, neurological disorders, and chronic respiratory diseases; however HIV/AIDS was a notable driver of increasing YLDs in sub-Saharan Africa. Also, the proportion of disability-adjusted life years due to YLDs increased globally from 21·1% in 1990 to 31·2% in 2013. Interpretation Ageing of the world’s population is leading to a substantial increase in the numbers of individuals with sequelae of diseases and injuries. Rates of YLDs are declining much more slowly than mortality rates. The non-fatal dimensions of disease and injury will require more and more attention from health systems. The transition to non- fatal outcomes as the dominant source of burden of disease is occurring rapidly outside of sub-Saharan Africa. Our results can guide future health initiatives through examination of epidemiological trends and a better understanding

of variation across countries

Added: Jun 7, 2015
Article
Vlassov V. The Lancet. 2016. Vol. 388. No. 10053. P. 1545-1602.
Background

Non-fatal outcomes of disease and injury increasingly detract from the ability of the world's population to live in full health, a trend largely attributable to an epidemiological transition in many countries from causes affecting children, to non-communicable diseases (NCDs) more common in adults. For the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015), we estimated the incidence, prevalence, and years lived with disability for diseases and injuries at the global, regional, and national scale over the period of 1990 to 2015.

Methods

We estimated incidence and prevalence by age, sex, cause, year, and geography with a wide range of updated and standardised analytical procedures. Improvements from GBD 2013 included the addition of new data sources, updates to literature reviews for 85 causes, and the identification and inclusion of additional studies published up to November, 2015, to expand the database used for estimation of non-fatal outcomes to 60 900 unique data sources. Prevalence and incidence by cause and sequelae were determined with DisMod-MR 2.1, an improved version of the DisMod-MR Bayesian meta-regression tool first developed for GBD 2010 and GBD 2013. For some causes, we used alternative modelling strategies where the complexity of the disease was not suited to DisMod-MR 2.1 or where incidence and prevalence needed to be determined from other data. For GBD 2015 we created a summary indicator that combines measures of income per capita, educational attainment, and fertility (the Socio-demographic Index [SDI]) and used it to compare observed patterns of health loss to the expected pattern for countries or locations with similar SDI scores.

Findings

We generated 9·3 billion estimates from the various combinations of prevalence, incidence, and YLDs for causes, sequelae, and impairments by age, sex, geography, and year. In 2015, two causes had acute incidences in excess of 1 billion: upper respiratory infections (17·2 billion, 95% uncertainty interval [UI] 15·4–19·2 billion) and diarrhoeal diseases (2·39 billion, 2·30–2·50 billion). Eight causes of chronic disease and injury each affected more than 10% of the world's population in 2015: permanent caries, tension-type headache, iron-deficiency anaemia, age-related and other hearing loss, migraine, genital herpes, refraction and accommodation disorders, and ascariasis. The impairment that affected the greatest number of people in 2015 was anaemia, with 2·36 billion (2·35–2·37 billion) individuals affected. The second and third leading impairments by number of individuals affected were hearing loss and vision loss, respectively. Between 2005 and 2015, there was little change in the leading causes of years lived with disability (YLDs) on a global basis. NCDs accounted for 18 of the leading 20 causes of age-standardised YLDs on a global scale. Where rates were decreasing, the rate of decrease for YLDs was slower than that of years of life lost (YLLs) for nearly every cause included in our analysis. For low SDI geographies, Group 1 causes typically accounted for 20–30% of total disability, largely attributable to nutritional deficiencies, malaria, neglected tropical diseases, HIV/AIDS, and tuberculosis. Lower back and neck pain was the leading global cause of disability in 2015 in most countries. The leading cause was sense organ disorders in 22 countries in Asia and Africa and one in central Latin America; diabetes in four countries in Oceania; HIV/AIDS in three southern sub-Saharan African countries; collective violence and legal intervention in two north African and Middle Eastern countries; iron-deficiency anaemia in Somalia and Venezuela; depression in Uganda; onchoceriasis in Liberia; and other neglected tropical diseases in the Democratic Republic of the Congo.

Interpretation

Ageing of the world's population is increasing the number of people living with sequelae of diseases and injuries. Shifts in the epidemiological profile driven by socioeconomic change also contribute to the continued increase in years lived with disability (YLDs) as well as the rate of increase in YLDs. Despite limitations imposed by gaps in data availability and the variable quality of the data available, the standardised and comprehensive approach of the GBD study provides opportunities to examine broad trends, compare those trends between countries or subnational geographies, benchmark against locations at similar stages of development, and gauge the strength or weakness of the estimates available.

Added: Oct 13, 2016
Article
Vlassov V. The Lancet. 2017. Vol. 390. No. 10100. P. 1211-1259.

Background

As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016.

Methods

We estimated prevalence and incidence for 328 diseases and injuries and 2982 sequelae, their non-fatal consequences. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between incidence, prevalence, remission, and cause of death rates for each condition. For some causes, we used alternative modelling strategies if incidence or prevalence needed to be derived from other data. YLDs were estimated as the product of prevalence and a disability weight for all mutually exclusive sequelae, corrected for comorbidity and aggregated to cause level. We updated the Socio-demographic Index (SDI), a summary indicator of income per capita, years of schooling, and total fertility rate. GBD 2016 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER).

Findings

Globally, low back pain, migraine, age-related and other hearing loss, iron-deficiency anaemia, and major depressive disorder were the five leading causes of YLDs in 2016, contributing 57·6 million (95% uncertainty interval [UI] 40·8–75·9 million [7·2%, 6·0–8·3]), 45·1 million (29·0–62·8 million [5·6%, 4·0–7·2]), 36·3 million (25·3–50·9 million [4·5%, 3·8–5·3]), 34·7 million (23·0–49·6 million [4·3%, 3·5–5·2]), and 34·1 million (23·5–46·0 million [4·2%, 3·2–5·3]) of total YLDs, respectively. Age-standardised rates of YLDs for all causes combined decreased between 1990 and 2016 by 2·7% (95% UI 2·3–3·1). Despite mostly stagnant age-standardised rates, the absolute number of YLDs from non-communicable diseases has been growing rapidly across all SDI quintiles, partly because of population growth, but also the ageing of populations. The largest absolute increases in total numbers of YLDs globally were between the ages of 40 and 69 years. Age-standardised YLD rates for all conditions combined were 10·4% (95% UI 9·0–11·8) higher in women than in men. Iron-deficiency anaemia, migraine, Alzheimer's disease and other dementias, major depressive disorder, anxiety, and all musculoskeletal disorders apart from gout were the main conditions contributing to higher YLD rates in women. Men had higher age-standardised rates of substance use disorders, diabetes, cardiovascular diseases, cancers, and all injuries apart from sexual violence. Globally, we noted much less geographical variation in disability than has been documented for premature mortality. In 2016, there was a less than two times difference in age-standardised YLD rates for all causes between the location with the lowest rate (China, 9201 YLDs per 100 000, 95% UI 6862–11943) and highest rate (Yemen, 14 774 YLDs per 100 000, 11 018–19 228).

Interpretation

The decrease in death rates since 1990 for most causes has not been matched by a similar decline in age-standardised YLD rates. For many large causes, YLD rates have either been stagnant or have increased for some causes, such as diabetes. As populations are ageing, and the prevalence of disabling disease generally increases steeply with age, health systems will face increasing demand for services that are generally costlier than the interventions that have led to declines in mortality in childhood or for the major causes of mortality in adults. Up-to-date information about the trends of disease and how this varies between countries is essential to plan for an adequate health-system response.

 

Added: Sep 15, 2017
Article
Vlassov V. The Lancet. 2014. Vol. 384. No. 9947. P. 980-1004.

Background The fifth Millennium Development Goal (MDG 5) established the goal of a 75% reduction in the maternal mortality ratio (MMR; number of maternal deaths per 100 000 livebirths) between 1990 and 2015. We aimed to measure levels and track trends in maternal mortality, the key causes contributing to maternal death, and timing of maternal death with respect to delivery. Methods We used robust statistical methods including the Cause of Death Ensemble model (CODEm) to analyse a database of data for 7065 site-years and estimate the number of maternal deaths from all causes in 188 countries between 1990 and 2013. We estimated the number of pregnancy-related deaths caused by HIV on the basis of a systematic review of the relative risk of dying during pregnancy for HIV-positive women compared with HIV-negative women. We also estimated the fraction of these deaths aggravated by pregnancy on the basis of a systematic review. To estimate the numbers of maternal deaths due to nine different causes, we identified 61 sources from a systematic review and 943 site-years of vital registration data. We also did a systematic review of reports about the timing of maternal death, identifying 142 sources to use in our analysis. We developed estimates for each country for 1990—2013 using Bayesian meta-regression. We estimated 95% uncertainty intervals (UIs) for all values. Findings 292 982 (95% UI 261 017—327 792) maternal deaths occurred in 2013, compared with 376 034 (343 483—407 574) in 1990. The global annual rate of change in the MMR was −0·3% (—1·1 to 0·6) from 1990 to 2003, and −2·7% (—3·9 to −1·5) from 2003 to 2013, with evidence of continued acceleration. MMRs reduced consistently in south, east, and southeast Asia between 1990 and 2013, but maternal deaths increased in much of sub-Saharan Africa during the 1990s. 2070 (1290—2866) maternal deaths were related to HIV in 2013, 0·4% (0·2—0·6) of the global total. MMR was highest in the oldest age groups in both 1990 and 2013. In 2013, most deaths occurred intrapartum or postpartum. Causes varied by region and between 1990 and 2013. We recorded substantial variation in the MMR by country in 2013, from 956·8 (685·1—1262·8) in South Sudan to 2·4 (1·6—3·6) in Iceland. Interpretation Global rates of change suggest that only 16 countries will achieve the MDG 5 target by 2015. Accelerated reductions since the Millennium Declaration in 2000 coincide with increased development assistance for maternal, newborn, and child health. Setting of targets and associated interventions for after 2015 will need careful consideration of regions that are making slow progress, such as west and central Africa.

Added: May 2, 2014
Article
Vlassov V. The Lancet. 2016. Vol. 388. No. 1053. P. 1775-1812.

coBverage of specific reproductive health care services as well as assessment of observed versus expected maternal mortality as a function of Socio-Demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility.

Findings

Only ten countries achieved MDG 5, but 122 of 195 countries have already met SDG 3.1. Geographic disparities widened and, in 2015, there were still 24 countries with MMR greater than 400. The proportion of all maternal deaths occurring in the bottom two SDI quintiles, where haemorrhage is the dominant cause of maternal death, increased from roughly 68% in 1990 to more than 80% in 2015. The middle SDI quintile improved the most from 1990 to 2015, but also has the most complicated etiologic profile. Maternal mortality in the highest SDI quintile is mostly due to other direct maternal disorders, indirect maternal disorders, and abortion, ectopic pregnancy, and miscarriage. Historical patterns suggest achievement of SDG 3.1 will require 91% coverage of one antenatal care (ANC) visit, 78% of four ANC visits, 81% of in-facility delivery (IFD), and 87% of skilled birth attendance (SBA).

Interpretation

Several challenges to improving reproductive health lie ahead in the SDG era. Countries should: a) establish or renew systems for collection and timely dissemination of health data; b) expand coverage and improve quality of family planning services, including access to contraception and safe abortion to address high adolescent fertility; c) invest in improving health system capacity, including coverage of routine reproductive health care and of more advanced obstetric care—including emergency obstetric care (EmOC); d) Adapt health systems and data collection systems to monitor and reverse the increase in indirect, other direct, and late maternal deaths, especially in high SDI locations; e) Examine their own performance with respect to their SDI level, using that information to formulate strategies for improving performance and ensuring optimum reproductive health of their population.

Added: Jul 20, 2016
Article
Vlassov V. The Lancet. 2016. Vol. 388. No. 10053. P. 1459-1544.

Background

Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures.

Methods

We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography–year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER).

Findings

Globally, life expectancy from birth increased from 61·7 years (95% uncertainty interval 61·4–61·9) in 1980 to 71·8 years (71·5–72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7–17·4), to 62·6 years (56·5–70·2). Total deaths increased by 4·1% (2·6–5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0% (15·8–18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1% (12·6–16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1% (11·9–14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1%, 39·1–44·6), malaria (43·1%, 34·7–51·8), neonatal preterm birth complications (29·8%, 24·8–34·9), and maternal disorders (29·1%, 19·3–37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000–183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000–532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death.

Interpretation

At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems.

Added: Oct 13, 2016
Article
Vlassov V. The Lancet. 2014. Vol. 384. No. 9945. P. 766-781.

Background In 2010, overweight and obesity were estimated to cause 3.4 million deaths, 3.9% of years of life lost, and 3.8% of DALYs globally. The rise in obesity has led to widespread calls for regular monitoring of changes in overweight and obesity prevalence in all populations. Comparative, up-to-date information on levels and trends is essential both to quantify population health effects and to prompt decision-makers to prioritize action. Methods We systematically identified surveys, reports, and published studies (n = 1,769) that included information on height and weight, both through physical measurements and self-reports. Mixed effects linear regression was used to correct for the bias in self-reports. Age-sex-country-year observations (n = 19,244) on prevalence of obesity and overweight were synthesized using a spatio-temporal Gaussian Process Regression model to estimate prevalence with 95% uncertainty intervals. Findings Globally, the proportion of adults with a body mass index (BMI) of 25 or greater increased from 28.8% (95% UI: 28.4-29.3) in 1980 to 36.9% (36.3-37.4) in 2013 for men and from 29.8% (29.3-30.2) to 38.0% (37.5-38.5) for women. Increases were observed in both developed and developing countries. There have been substantial increases in prevalence among children and adolescents in developed countries, with 23.8% (22.9-24.7) of boys and 22.6% (21.7-23.6) of girls being either overweight or obese in 2013. The prevalence of overweight and obesity is also rising among children and adolescents in developing countries as well, rising from 8.1% (7.7-8.6) to 12.9% (12.3-13.5) in 2013 for boys and from 8.4% (8.1-8.8) to 13.4% (13.0-13.9) in girls. Among adults, estimated prevalence of obesity exceeds 50% among men in Tonga and women in Kuwait, Kiribati, Federated States of Micronesia, Libya, Qatar, Tonga, and Samoa. Since 2006, the increase in adult obesity in developed countries has stabilized. Interpretation Because of the established health risks and substantial increases in prevalence, obesity has become a major global health challenge. Contrary to other major global risks, there is little evidence of successful population-level intervention strategies to reduce exposure. Not only is obesity increasing, but there are no national success stories over the past 33 years. Urgent global action and leadership is required to assist countries to more effectively intervene.

Added: Jun 7, 2014
Article
Vlassov V. The Lancet. 2017. Vol. 390. No. 10100. P. 1084-1150.

Background

Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016.

Methods

We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15–60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0·5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Socio-demographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone.

Findings

Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5–24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates—a measure of relative inequality—increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86·9 years (95% UI 86·7–87·2), and for men in Singapore, at 81·3 years (78·8–83·7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, and the gap between male and female life expectancy increased with progression to higher levels of SDI. Some countries with exceptional health performance in 1990 in terms of the difference in observed to expected life expectancy at birth had slower progress on the same measure in 2016.

Interpretation

Globally, mortality rates have decreased across all age groups over the past five decades, with the largest improvements occurring among children younger than 5 years. However, at the national level, considerable heterogeneity remains in terms of both level and rate of changes in age-specific mortality; increases in mortality for certain age groups occurred in some locations. We found evidence that the absolute gap between countries in age-specific death rates has declined, although the relative gap for some age-sex groups increased. Countries that now lead in terms of having higher observed life expectancy than that expected on the basis of development alone, or locations that have either increased this advantage or rapidly decreased the deficit from expected levels, could provide insight into the means to accelerate progress in nations where progress has stalled.

 

Added: Sep 15, 2017
Article
Vlassov V. The Lancet. 2016. Vol. 388. No. 10053. P. 1725-1774.

BACKGROUND: Established in 2000, Millennium Development Goal 4 (MDG4) catalysed extraordinary political, financial, and social commitments to reduce under-5 mortality by two-thirds between 1990 and 2015. At the country level, the pace of progress in improving child survival has varied markedly, highlighting a crucial need to further examine potential drivers of accelerated or slowed decreases in child mortality. The Global Burden of Disease 2015 Study (GBD 2015) provides an analytical framework to comprehensively assess these trends for under-5 mortality, age-specific and cause-specific mortality among children under 5 years, and stillbirths by geography over time. METHODS: Drawing from analytical approaches developed and refined in previous iterations of the GBD study, we generated updated estimates of child mortality by age group (neonatal, post-neonatal, ages 1-4 years, and under 5) for 195 countries and territories and selected subnational geographies, from 1980-2015. We also estimated numbers and rates of stillbirths for these geographies and years. Gaussian process regression with data source adjustments for sampling and non-sampling bias was applied to synthesise input data for under-5 mortality for each geography. Age-specific mortality estimates were generated through a two-stage age-sex splitting process, and stillbirth estimates were produced with a mixed-effects model, which accounted for variable stillbirth definitions and data source-specific biases. For GBD 2015, we did a series of novel analyses to systematically quantify the drivers of trends in child mortality across geographies. First, we assessed observed and expected levels and annualised rates of decrease for under-5 mortality and stillbirths as they related to the Soci-demographic Index (SDI). Second, we examined the ratio of recorded and expected levels of child mortality, on the basis of SDI, across geographies, as well as differences in recorded and expected annualised rates of change for under-5 mortality. Third, we analysed levels and cause compositions of under-5 mortality, across time and geographies, as they related to rising SDI. Finally, we decomposed the changes in under-5 mortality to changes in SDI at the global level, as well as changes in leading causes of under-5 deaths for countries and territories. We documented each step of the GBD 2015 child mortality estimation process, as well as data sources, in accordance with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). FINDINGS: Globally, 5.8 million (95% uncertainty interval [UI] 5.7-6.0) children younger than 5 years died in 2015, representing a 52.0% (95% UI 50.7-53.3) decrease in the number of under-5 deaths since 1990. Neonatal deaths and stillbirths fell at a slower pace since 1990, decreasing by 42.4% (41.3-43.6) to 2.6 million (2.6-2.7) neonatal deaths and 47.0% (35.1-57.0) to 2.1 million (1.8-2.5) stillbirths in 2015. Between 1990 and 2015, global under-5 mortality decreased at an annualised rate of decrease of 3.0% (2.6-3.3), falling short of the 4.4% annualised rate of decrease required to achieve MDG4. During this time, 58 countries met or exceeded the pace of progress required to meet MDG4. Between 2000, the year MDG4 was formally enacted, and 2015, 28 additional countries that did not achieve the 4.4% rate of decrease from 1990 met the MDG4 pace of decrease. However, absolute levels of under-5 mortality remained high in many countries, with 11 countries still recording rates exceeding 100 per 1000 livebirths in 2015. Marked decreases in under-5 deaths due to a number of communicable diseases, including lower respiratory infections, diarrhoeal diseases, measles, and malaria, accounted for much of the progress in lowering overall under-5 mortality in low-income countries. Compared with gains achieved for infectious diseases and nutritional deficiencies, the persisting toll of neonatal conditions and congenital anomalies on child survival became evident, especially in low-income and low-middle-income countries. We found sizeable heterogeneities in comparing observed and expected rates of under-5 mortality, as well as differences in observed and expected rates of change for under-5 mortality. At the global level, we recorded a divergence in observed and expected levels of under-5 mortality starting in 2000, with the observed trend falling much faster than what was expected based on SDI through 2015. Between 2000 and 2015, the world recorded 10.3 million fewer under-5 deaths than expected on the basis of improving SDI alone. INTERPRETATION: Gains in child survival have been large, widespread, and in many places in the world, faster than what was anticipated based on improving levels of development. Yet some countries, particularly in sub-Saharan Africa, still had high rates of under-5 mortality in 2015. Unless these countries are able to accelerate reductions in child deaths at an extraordinary pace, their achievement of proposed SDG targets is unlikely. Improving the evidence base on drivers that might hasten the pace of progress for child survival, ranging from cost-effective intervention packages to innovative financing mechanisms, is vital to charting the pathways for ultimately ending preventable child deaths by 2030. FUNDING: Bill & Melinda Gates Foundation.

Added: Apr 11, 2014
Article
Vlassov V. The Lancet. 2016. Vol. 388. No. 10053. P. 1725-1774.

Background

Established in 2000, Millennium Development Goal 4 (MDG4) catalysed extraordinary political, financial, and social commitments to reduce under-5 mortality by two-thirds between 1990 and 2015. At the country level, the pace of progress in improving child survival has varied markedly, highlighting a crucial need to further examine potential drivers of accelerated or slowed decreases in child mortality. The Global Burden of Disease 2015 Study (GBD 2015) provides an analytical framework to comprehensively assess these trends for under-5 mortality, age-specific and cause-specific mortality among children under 5 years, and stillbirths by geography over time.

Methods

Drawing from analytical approaches developed and refined in previous iterations of the GBD study, we generated updated estimates of child mortality by age group (neonatal, post-neonatal, ages 1–4 years, and under 5) for 195 countries and territories and selected subnational geographies, from 1980–2015. We also estimated numbers and rates of stillbirths for these geographies and years. Gaussian process regression with data source adjustments for sampling and non-sampling bias was applied to synthesise input data for under-5 mortality for each geography. Age-specific mortality estimates were generated through a two-stage age–sex splitting process, and stillbirth estimates were produced with a mixed-effects model, which accounted for variable stillbirth definitions and data source-specific biases. For GBD 2015, we did a series of novel analyses to systematically quantify the drivers of trends in child mortality across geographies. First, we assessed observed and expected levels and annualised rates of decrease for under-5 mortality and stillbirths as they related to the Soci-demographic Index (SDI). Second, we examined the ratio of recorded and expected levels of child mortality, on the basis of SDI, across geographies, as well as differences in recorded and expected annualised rates of change for under-5 mortality. Third, we analysed levels and cause compositions of under-5 mortality, across time and geographies, as they related to rising SDI. Finally, we decomposed the changes in under-5 mortality to changes in SDI at the global level, as well as changes in leading causes of under-5 deaths for countries and territories. We documented each step of the GBD 2015 child mortality estimation process, as well as data sources, in accordance with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER).

Findings

Globally, 5·8 million (95% uncertainty interval [UI] 5·7–6·0) children younger than 5 years died in 2015, representing a 52·0% (95% UI 50·7–53·3) decrease in the number of under-5 deaths since 1990. Neonatal deaths and stillbirths fell at a slower pace since 1990, decreasing by 42·4% (41·3–43·6) to 2·6 million (2·6–2·7) neonatal deaths and 47·0% (35·1–57·0) to 2·1 million (1·8-2·5) stillbirths in 2015. Between 1990 and 2015, global under-5 mortality decreased at an annualised rate of decrease of 3·0% (2·6–3·3), falling short of the 4·4% annualised rate of decrease required to achieve MDG4. During this time, 58 countries met or exceeded the pace of progress required to meet MDG4. Between 2000, the year MDG4 was formally enacted, and 2015, 28 additional countries that did not achieve the 4·4% rate of decrease from 1990 met the MDG4 pace of decrease. However, absolute levels of under-5 mortality remained high in many countries, with 11 countries still recording rates exceeding 100 per 1000 livebirths in 2015. Marked decreases in under-5 deaths due to a number of communicable diseases, including lower respiratory infections, diarrhoeal diseases, measles, and malaria, accounted for much of the progress in lowering overall under-5 mortality in low-income countries. Compared with gains achieved for infectious diseases and nutritional deficiencies, the persisting toll of neonatal conditions and congenital anomalies on child survival became evident, especially in low-income and low-middle-income countries. We found sizeable heterogeneities in comparing observed and expected rates of under-5 mortality, as well as differences in observed and expected rates of change for under-5 mortality. At the global level, we recorded a divergence in observed and expected levels of under-5 mortality starting in 2000, with the observed trend falling much faster than what was expected based on SDI through 2015. Between 2000 and 2015, the world recorded 10·3 million fewer under-5 deaths than expected on the basis of improving SDI alone.

Interpretation

Gains in child survival have been large, widespread, and in many places in the world, faster than what was anticipated based on improving levels of development. Yet some countries, particularly in sub-Saharan Africa, still had high rates of under-5 mortality in 2015. Unless these countries are able to accelerate reductions in child deaths at an extraordinary pace, their achievement of proposed SDG targets is unlikely. Improving the evidence base on drivers that might hasten the pace of progress for child survival, ranging from cost-effective intervention packages to innovative financing mechanisms, is vital to charting the pathways for ultimately ending preventable child deaths by 2030.

Added: Oct 13, 2016
Article
Vlassov V. The Lancet. 2017. Vol. 390. No. 10091. P. 231-266.

Background

National levels of personal health-care access and quality can be approximated by measuring mortality rates from causes that should not be fatal in the presence of effective medical care (ie, amenable mortality). Previous analyses of mortality amenable to health care only focused on high-income countries and faced several methodological challenges. In the present analysis, we use the highly standardised cause of death and risk factor estimates generated through the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) to improve and expand the quantification of personal health-care access and quality for 195 countries and territories from 1990 to 2015.

Methods

We mapped the most widely used list of causes amenable to personal health care developed by Nolte and McKee to 32 GBD causes. We accounted for variations in cause of death certification and misclassifications through the extensive data standardisation processes and redistribution algorithms developed for GBD. To isolate the effects of personal health-care access and quality, we risk-standardised cause-specific mortality rates for each geography-year by removing the joint effects of local environmental and behavioural risks, and adding back the global levels of risk exposure as estimated for GBD 2015. We employed principal component analysis to create a single, interpretable summary measure–the Healthcare Quality and Access (HAQ) Index–on a scale of 0 to 100. The HAQ Index showed strong convergence validity as compared with other health-system indicators, including health expenditure per capita (r=0·88), an index of 11 universal health coverage interventions (r=0·83), and human resources for health per 1000 (r=0·77). We used free disposal hull analysis with bootstrapping to produce a frontier based on the relationship between the HAQ Index and the Socio-demographic Index (SDI), a measure of overall development consisting of income per capita, average years of education, and total fertility rates. This frontier allowed us to better quantify the maximum levels of personal health-care access and quality achieved across the development spectrum, and pinpoint geographies where gaps between observed and potential levels have narrowed or widened over time.

Findings

Between 1990 and 2015, nearly all countries and territories saw their HAQ Index values improve; nonetheless, the difference between the highest and lowest observed HAQ Index was larger in 2015 than in 1990, ranging from 28·6 to 94·6. Of 195 geographies, 167 had statistically significant increases in HAQ Index levels since 1990, with South Korea, Turkey, Peru, China, and the Maldives recording among the largest gains by 2015. Performance on the HAQ Index and individual causes showed distinct patterns by region and level of development, yet substantial heterogeneities emerged for several causes, including cancers in highest-SDI countries; chronic kidney disease, diabetes, diarrhoeal diseases, and lower respiratory infections among middle-SDI countries; and measles and tetanus among lowest-SDI countries. While the global HAQ Index average rose from 40·7 (95% uncertainty interval, 39·0–42·8) in 1990 to 53·7 (52·2–55·4) in 2015, far less progress occurred in narrowing the gap between observed HAQ Index values and maximum levels achieved; at the global level, the difference between the observed and frontier HAQ Index only decreased from 21·2 in 1990 to 20·1 in 2015. If every country and territory had achieved the highest observed HAQ Index by their corresponding level of SDI, the global average would have been 73·8 in 2015. Several countries, particularly in eastern and western sub-Saharan Africa, reached HAQ Index values similar to or beyond their development levels, whereas others, namely in southern sub-Saharan Africa, the Middle East, and south Asia, lagged behind what geographies of similar development attained between 1990 and 2015.

Interpretation

This novel extension of the GBD Study shows the untapped potential for personal health-care access and quality improvement across the development spectrum. Amid substantive advances in personal health care at the national level, heterogeneous patterns for individual causes in given countries or territories suggest that few places have consistently achieved optimal health-care access and quality across health-system functions and therapeutic areas. This is especially evident in middle-SDI countries, many of which have recently undergone or are currently experiencing epidemiological transitions. The HAQ Index, if paired with other measures of health-system characteristics such as intervention coverage, could provide a robust avenue for tracking progress on universal health coverage and identifying local priorities for strengthening personal health-care quality and access throughout the world.

 

Added: May 28, 2017
Article
Vlassov V. JAMA - Journal of the American Medical Association. 1995. Vol. 273. No. 20. P. 1569-1573.

FOR DECADES Russian leaders sacrificed health care to the financial and human resource needs of military and space efforts. Centralized and government controlled in every respect, Soviet health care became disjointed, inequitable, and inadequate.1 Presumably egalitarian, the health care system was in fact strictly hierarchical. Bribery to obtain better quality care was common. Physicians had access only to Soviet medical literature. The government concealed information about scientific and clinical advances produced outside of the Soviet Union from most physicians and the general public. Limited information was available, but only in restricted areas of selected central libraries in Moscow and Leningrad (now St Petersburg). Concurrent environmental pollution, alcoholism,2 tobacco addiction, and poor nutrition led to public health crises of major proportions.3

Added: Jun 1, 2017
Article
Mordvinova M., Endaltseva A. Journal of Communication in Healthcare: Strategies, Media, and Engagement in Global Health. 2015. Vol. 8. No. 4. P. 325-334.

Smoking regulation constitutes a challenging issue for both developed and developing countries that aim to improve their state of public health and constituent wellbeing. Anti-smoking information and communication campaigns accompanying regulation acts can either enhance or sabotage national policy initiatives. This is especially salient in countries like Russia, where smoking is one of the top public health threats and causes of population decline.1 As such, critical analysis of the message effectiveness of Russia’s anti-smoking campaign is warranted. This study employs frame analysis to examine the anti-smoking messages embedded in the sections of Federal Law No. 15 that regulate the information and communication campaigns. The study’s results illustrate that in addition to the lack of a comprehensive, effective public relations campaign promoting smoking cessation, the rhetoric guiding the enforcement of the anti-smoking legislation enforcement is doomed to yield desired results. This study suggests recommendations for reframing existing messages to enable a more comprehensive and effective Russian anti-smoking.

Added: Sep 3, 2015
Article
Vlassov V. New England Journal of Medicine. 2017. Vol. 377. No. 1. P. 13-27.

BACKGROUND:

Although the rising pandemic of obesity has received major attention in many countries, the effects of this attention on trends and the disease burden of obesity remain uncertain.

METHODS:

We analyzed data from 68.5 million persons to assess the trends in the prevalence of overweight and obesity among children and adults between 1980 and 2015. Using the Global Burden of Disease study data and methods, we also quantified the burden of disease related to high body-mass index (BMI), according to age, sex, cause, and BMI in 195 countries between 1990 and 2015.

RESULTS:

In 2015, a total of 107.7 million children and 603.7 million adults were obese. Since 1980, the prevalence of obesity has doubled in more than 70 countries and has continuously increased in most other countries. Although the prevalence of obesity among children has been lower than that among adults, the rate of increase in childhood obesity in many countries has been greater than the rate of increase in adult obesity. High BMI accounted for 4.0 million deaths globally, nearly 40% of which occurred in persons who were not obese. More than two thirds of deaths related to high BMI were due to cardiovascular disease. The disease burden related to high BMI has increased since 1990; however, the rate of this increase has been attenuated owing to decreases in underlying rates of death from cardiovascular disease.

CONCLUSIONS:

The rapid increase in the prevalence and disease burden of elevated BMI highlights the need for continued focus on surveillance of BMI and identification, implementation, and evaluation of evidence-based interventions to address this problem. (Funded by the Bill and Melinda Gates Foundation.).

 

Added: Jul 9, 2017