• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 122
Sort:
by name
by year
Article
Пирковский А. Ю. Известия РАН. Серия математическая. 2012. Т. 76. № 4. С. 65-124.

We prove the equation w.dg A = w.db A for every nuclear Fréchet–Arens–Michael algebra A of finite weak bidimension, where w.dg A is the weak global dimension and w.db A is the weak bidimension of A. Assuming that A has a projective bimodule resolution of finite type, we establish the estimate dg A ≤ db A + 1, where dg A is the global dimension and db A is the bidimension of A. We also prove that dg A = db A = w.dg A = w.db A = n for all nuclear Fréchet –Arens–Michael algebras satisfying the Van den Bergh conditions VdB(n). As an application, we calculate the homological dimensions of the smooth and complex-analytic quantum tori.

Added: Sep 19, 2012
Article
Шур М. Г. Известия РАН. Серия математическая. 1963. Т. 27. № 1. С. 45-60.
Added: Feb 4, 2014
Article
Рудаков А. Н. Известия РАН. Серия математическая. 1969. Т. 33. С. 748-764.
Added: Jun 22, 2010
Article
В.А.Васильев Известия РАН. Серия математическая. 2016. Т. 80. № 4. С. 163-184.

Rational homology groups of spaces of non-resultant (that is, having only trivial common zeros) systems of homogeneous quadratic polynomial systems in R^3 are calculated

Added: Mar 3, 2018
Article
Чельцов И. А. Известия РАН. Серия математическая. 2014. Т. 78. № 2. С. 167-224.

We prove two new local inequalities for divisors on smooth surfaces and consider several applications of these inequalities.

Added: Dec 6, 2013
Article
Артамкин И. В. Известия РАН. Серия математическая. 1988. Т. 52. № 5.
Added: May 20, 2010
Article
Рудаков А. Н. Известия РАН. Серия математическая. 1971. Т. 35. С. 1113-1119.
Added: Jun 22, 2010
Article
Тюрин Н. А. Известия РАН. Серия математическая. 2002. Т. 66. № 3. С. 175-196.
Added: Oct 1, 2010
Article
Гринес В. З., Куренков Е. Д. Известия РАН. Серия математическая. 2020. Т. 84. № 5. С. 40-97.

In this paper, we consider orientation-preserving A-diffeomorphisms of orientable surfaces of genus greater than one that contain a one-dimensional, spaciously located perfect attractor. It is shown that the question of the topological classification of the restrictions of diffeomorphisms to such basic sets is reduced to the problem of the topological classification of pseudo-Anosov homeomorphisms with a marked set of saddle singularities. In particular, a proof is given of the topological classification of A-diffeomorphisms of the surfaces under consideration, announced by Yu. A. Zhirov and RV Plykin, whose nonwandering set consists of a one-dimensional spacious attractor and zero-dimensional sources.

Added: Oct 30, 2019
Article
Рудаков А. Н., Шафаревич И. Известия РАН. Серия математическая. 1976. Т. 40. № 6. С. 1269-1307.
Added: Jun 22, 2010
Article
Рудаков А. Н. Известия РАН. Серия математическая. 1988. Т. 52. № 4. С. 788-812.
Added: Jun 22, 2010
Article
Городенцев А. Л. Известия РАН. Серия математическая. 1988. Т. 52. № 4. С. 740-757.
Added: Jun 15, 2010
Article
Романов А. В. Известия РАН. Серия математическая. 2001. Т. 65. № 5. С. 129-152.
Added: Nov 25, 2012
Article
Казарян М. Э., Ландо С. К. Известия РАН. Серия математическая. 2004. Т. 68. № 5.
Added: May 19, 2010
Article
Пахомов Ф. Н. Известия РАН. Серия математическая. 2016. Т. 80. № 6. С. 173-216.
Added: Dec 4, 2017
Article
Рудаков А. Н. Известия РАН. Серия математическая. 1979. Т. 43. № 1. С. 178-183.
Added: Jun 22, 2010
Article
Степин С. А., Фуфаев В. В. Известия РАН. Серия математическая. 2017. Т. 81. № 2. С. 129-160.

This paper is devoted to the development of the phase-integral method as applied to a boundary-value problem modelling the passage from discrete to continuous spectrum in the non- selfadjoint case. Our aim is to study the patterns and features of the asymptotic distribution of eigenvalues of the problem and to describe the topologically distinct types of spectrum configurations in the quasiclassical limit.

Added: Oct 31, 2019
Article
Фонарев А. В. Известия РАН. Серия математическая. 2013. Т. 77. № 5. С. 203-224.

We construct two Lefschetz decompositions of the derived category of coherent sheaves on the Grassmannian of k-dimensional subspaces in a vector space of dimension n. Both of them admit a Lefschetz basis consisting of equivariant vector bundles. We prove fullness of the first decomposition and conjecture it for the second one. In the case when n and k are coprime these decompositions coincide and are minimal. In general, we conjecture minimality of the second decomposition.

Added: Dec 3, 2012