• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 167
Sort:
by name
by year
Article
Feigin B. L., Mytafyan G. S. Functional Analysis and Its Applications. 2013. Vol. 47. No. 1. P. 50-61.

The generating function of plane partitions {ai,j} subject to the constraint am,n = 0 is expressed and calculated as the character of an irreducible representation of the quantum toroidal algebra gl1 in the case K = q1 mq2 n.

Added: Mar 28, 2013
Article
Rudenko D. Functional Analysis and Its Applications. 2016. Vol. 50. No. 1. P. 66-70.

We prove the strong Suslin reciprocity law conjectured by A. B. Goncharov and describe its corollaries for the theory of scissor congruence of polyhedra in hyperbolic space. The proof is based on the study of Goncharov’s conjectural description of certain rational motivic cohomology groups of a field. Our main result is a homotopy invariance theorem for these groups.

Added: May 4, 2016
Article
Kolesnikov A., Banakh T., Bogachev V. Functional Analysis and Its Applications. 2004. P. 23-47.
Added: Oct 12, 2012
Article
Ilina A., Krichever I. M. Functional Analysis and Its Applications. 2017. Vol. 51. No. 1. P. 48-65.

New reductions of the 2D Toda equations associated with lower-triangular difference operators are proposed. Their explicit Hamiltonian description is obtained. 

Added: May 18, 2017
Article
Finkelberg M. V., Kubrak D. Functional Analysis and Its Applications. 2015. Vol. 49. No. 2. P. 135-141.

We slightly extend results of Evens and Mirković and “compute” the characteristic cycles of intersection cohomology sheaves on transversal slices in a double affine Grassmannian. We propose a conjecture relating the hyperbolic stalks and microlocalization at a torus-fixed point in a Poisson variety. © 2015, Springer Science+Business Media New York.

Added: Sep 3, 2015
Article
В. В. Лебедев Функциональный анализ и его приложения. 2012. Т. 46. № 2. С. 52-65.

We obtain a partial solution of the problem on the growth of the norms of exponential functions with a continuous phase in the Wiener algebra. The problem was posed by J.-P. Kahane at the International Congress of Mathematicians in Stockholm in 1962. He conjectured that (for a nonlinear phase) one can not achieve the growth slower than the logarithm of the frequency. Though the conjecture is still not confirmed, the author obtained first nontrivial results.

Added: Sep 29, 2012
Article
Фейгин Б. Л. Функциональный анализ и его приложения. 1985. Т. 19. № 2. С. 52-62.
Added: Jun 2, 2010
Article
Посицельский Л. Е. Функциональный анализ и его приложения. 2012. Т. 46. № 3. С. 71-80.

We prove that the algebra of closed differential forms on an (algebraic, formal, or analytic) disk with logarithmic singularities along several coordinate hyperplanes is Koszul (both nontopologically and topologically). A relation to variations of mixed Hodge-Tate structures is discussed in the introduction.

Added: Feb 4, 2013
Article
Нетай И. В. Функциональный анализ и его приложения. 2013. Т. 47. № 3. С. 54-74.

We describe the syzygy spaces for the Segre embedding~$\bbP(U)\times\bbP(V)\subset\bbP(U\otimes V)$ in terms of representations of $\GL(U)\times \GL(V)$ and construct the minimal resolutions of the sheaves~$\mathscr{O}_{\bbP(U)\times\bbP(V)}(a,b)$ in~$D(\bbP(U\otimes V))$ for~$a\geqslant-\dim(U)$ and~$b\geqslant-\dim(V)$. Also we prove some property of multiplication on syzygy spaces of the Segre embedding.

Added: Jun 21, 2013
Article
Кочетков Ю. Ю. Функциональный анализ и его приложения. 2002. Т. 36. № 3. С. 83-87.

Some special polynomial systems (antivandermond systems) and definition fields of their solutions are studied. In the case of four variables it is proved that definition field is an extension of degree 12 of real quadratic field.

Added: Jun 28, 2012
Article
Ольшанский Г. И. Функциональный анализ и его приложения. 2016. Т. 49. № 4. С. 61-75.
Added: Dec 29, 2016
Article
Шур М. Г. Функциональный анализ и его приложения. 1993. Т. 27. № 1. С. 92-93.
Added: Apr 4, 2013
Article
Фейгин Е. Б. Функциональный анализ и его приложения. 2008. Т. 42. № 1. С. 63-77.
Added: Sep 15, 2010
Article
Рыбников Г. Л. Функциональный анализ и его приложения. 1992. Т. 26. № 4. С. 75-77.
Added: Jun 4, 2010
Article
Кричевер И. М. Функциональный анализ и его приложения. 2012. Т. 46. № 2. С. 37-51.

Using meromorphic differentials with real periods, we prove Arbarello's conjecture that any compact complex cycle of dimension g−n in the moduli space M_g of smooth algebraic curves of genus g must intersect the locus of curves having a Weierstrass point of order at most n.

Added: Apr 17, 2014
Article
Р.С. Авдеев, Горфинкель Н. Е. Функциональный анализ и его приложения. 2012. Т. 46. № 3. С. 1-15.

For all spherical homogeneous spaces G/H, where G is a simply connected semisimple algebraic group and H a connected solvable subgroup of G, we compute the spectra of representations of G on spaces of regular sections of homogeneous line bundles over G/H.

Added: Feb 25, 2014
Article
Перепечко А. Ю. Функциональный анализ и его приложения. 2013. Т. 47. № 4. С. 45-52.

We prove that the action of the special automorphism group on affine cones over del Pezzo surfaces of degree 4 and 5 is infinitely transitive.

Added: Sep 26, 2019
Article
Шварцман О. В. Функциональный анализ и его приложения. 2009. Т. 43. № 2. С. 64-72.

Let Γ ⊂ U(1, 1) be the subgroup generated by the complex reflections. Suppose that Γ acts discretely on the domain K = {(z1, z2) ∈ C2 | |z1|2 − |z2|2 < 0} and that the projective group PΓ acts on the unit disk B = {|z1/z2| < 1} as a Fuchsian group of signature (n1, . . . , ns), s  3, ni  2. For such groups, we prove a Chevalley type theorem, i.e., find a necessary and sufficient condition for the quotient space K/Γ to be isomorphic to C2 − {0}.

Added: Jan 25, 2013
Article
Шварцман О. В. Функциональный анализ и его приложения. 2009. Т. 43. № 2. С. 64-72.
Added: Jan 20, 2010
Article
Фукс Д., Фейгин Б. Л. Функциональный анализ и его приложения. 1980. Т. 14. № 3. С. 45-60.
Added: Jun 2, 2010
Article
Мутафян Г. С., Типунин И. Ю. Функциональный анализ и его приложения. 2010. Т. 44. № 1. С. 68-79.
Added: Jan 24, 2011