• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 122
Sort:
by name
by year
Article
Mori S., Prokhorov Y. Izvestiya. Mathematics. 2016. Vol. 80. No. 5. P. 884-909.

Let (X,C) be a germ of a threefold X with terminal singularities along an irreducible reduced complete curve C with a contraction f:(X,C)→(Z,o) such that C=f^{−1}(o)_red and −KX is ample. Assume that (X,C) contains a point of type (IIA) and that a general member H∈|OX| containing C is normal. We classify such germs in terms of H.

Added: Oct 13, 2016
Article
Popov V. Izvestiya. Mathematics. 2013. Vol. 77. No. 4. P. 742-771.

We classify up to conjugacy the subgroups of certain types in the full, affine, and special affine Cremona groups. We prove that the normalizers of these subgroups are algebraic. As an application, we obtain new results in the linearization problem by generalizing Bia{\l}ynicki-Birula's results  of 1966--67 to disconnected groups.  We prove fusion theorems for  n-dimensional tori in the affine and in special affine Cremona groups of rank  n  and introduce and discuss  the notions of Jordan decomposition and torsion prime numbers for the Cremona groups.

Added: Aug 23, 2013
Article
Shitov Y. Izvestiya. Mathematics. 2019. Vol. 83. No. 1. P. 184-195.

Deficiency graphs arise in the problem of decomposing a tropical vector into a sum of points of a given tropical variety. We give an application of this concept to the theory of extended formulations of con- vex polytopes, and we show that the chromatic number of the deficiency graph of a special tropical matrix is a lower bound for the extension complexity of the corresponding convex polytope. We compare our new lower bound for extended formulations with existing estimates and make several conjectures on the relations between deficiency graphs, extended formulations, and rank functions of tropical matrices.

Added: Nov 11, 2020
Article
Кулешов С., Рудаков А. Н., Городенцев А. Л. Известия РАН. Серия математическая. 2004. Т. 68. № 4. С. 117-150.
Added: Jun 15, 2010
Article
Romanov A. Izvestiya. Mathematics. 2011. Vol. 75. No. 6. P. 1165-1183.
Added: Oct 6, 2012
Article
Тюрин Н. А. Известия РАН. Серия математическая. 2000. Т. 264. № 1. С. 197-210.
Added: Oct 1, 2010
Article
Харламов В. М., Куликов В. С. Известия РАН. Серия математическая. 2009. № 73:1. С. 121-156.
Added: Mar 2, 2011
Article
Шур М. Г. Известия РАН. Серия математическая. 1964. Т. 28. № 1. С. 123-146.
Added: Feb 4, 2014
Article
Горчинский С. О. Известия РАН. Серия математическая. 2008. Т. 72. № 6. С. 133-202.
Added: Feb 22, 2011
Article
Карасев М. В., Новикова Е. М. Известия РАН. Серия математическая. 2010. Т. 74. № 6. С. 55-106.
Added: Oct 23, 2012
Article
Тюрин Н. А. Известия РАН. Серия математическая. 2005. Т. 69. № 1. С. 179-194.
Added: Oct 1, 2010
Article
Осипов Д. В. Известия РАН. Серия математическая. 2018. Т. 82. № 4. С. 178-198.

We explicitly calculate an arithmetic adelic quotient group for a locally free sheaf on an arithmetic surface when the fibre over the infinite point of the base is taken into account. The result is stated in the form of a short exact sequence. We relate the last term of this sequence to the projective limits of groups which are finite direct products of copies of the one-dimensional real torus and are connected with the first cohomology groups of locally free sheaves on the arithmetic surface.

Added: Oct 5, 2018
Article
Буфетов А. И. Известия РАН. Серия математическая. 2016. Т. 80. № 2. С. 16-32.

The second paper in this series is devoted to the convergence of sequences of infinite determinantal measures, understood as the convergence of sequences of the corresponding finite determinantal measures. Besides the weak topology in the space of probability measures on the space of configurations, we also consider the natural immersion (defined almost surely with respect to the infinite Bessel process) of the space of configurations into the space of finite measures on the half-line, which induces a weak topology in the space of finite measures on the space of finite measures on the half-line. The main results of the present paper are sufficient conditions for the tightness of families and the convergence of sequences of induced determinantal processes as well as for the convergence of processes corresponding to finite-rank perturbations of operators.

Added: Jul 7, 2016
Article
Жгун В. С. Известия РАН. Серия математическая. 2007. Т. 71. № 6. С. 29-46.
Added: Mar 1, 2013
Article
Баранов А. Д. Известия РАН. Серия математическая. 2009. № 6. С. 3-28.
Added: Jan 17, 2014
Article
Шафаревич И., Рудаков А. Н. Известия РАН. Серия математическая. 1981. Т. 45. № 3. С. 646-661.
Added: Jun 22, 2010
Article
Вербицкий М. С. Известия РАН. Серия математическая. 2006. Т. 70. № 5. С. 13-30.
Added: Nov 2, 2010