• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 26
Sort:
by name
by year
Article
Владимиров А. А. Проблемы передачи информации. 2013. Т. 49. № 1. С. 61-65.

We model the secondary structure of an RNA molecule by means of a maximal non-crossing matching on a random word in a finite alphabet, where ties are only allowed between certain pairs of letters. We prove that the mean fraction of unmatched symbols does not vanish as the length of the word tends to infinity.

Added: Nov 17, 2013
Article
Кабатянский Г. А. Проблемы передачи информации. 2009. Т. 45. № 3. С. 106-111.
Added: Dec 10, 2011
Article
Вялый М. Н., Хузиев И. М. Проблемы передачи информации. 2015. Т. 51. № 1. С. 54-71.
We consider the problem of constructing a spanning tree in a synchronized network with an unknown topology. We give lower and upper bounds on the complexity of protocols for spanning tree constriction in various settings: for deterministic and probabilistic protocols, networks with distinguishable nodes, and anonymous networks. We present suboptimal protocols for which the multiplicative gap from the lower bound can be an arbitrarily slowly growing function of the number of vertices in the network.
Added: Jul 10, 2015
Article
Иванов Ф. И. Проблемы передачи информации. 2017. Т. 53. № 3. С. 30-43.

We propose a new ensemble of binary low-density parity-check codes with paritycheck matrices based on repetition codes and permutation matrices. The proposed class of codes is a subensemble of quasi-cyclic codes. For the constructed ensemble, we obtain minimum distance estimates. We present simulation results for the proposed code constructions under the (Sum-Product) iterative decoding algorithm for transmission over an additive white Gaussian noise channel using binary phase-shift keying.

Added: Feb 1, 2018
Article
Владимиров A., Рыбко А., Шлосман С. и др. Проблемы передачи информации. 2018. Т. 54. № 3. С. 102-111.

We establish the strong Poisson hypothesis for symmetric closed networks. In particular, we prove asymptotic independence of nodes as the size of the system tends to infinity.

Added: Dec 5, 2020
1 2