• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 279
Sort:
by name
by year
Article
Аржанцев И. В., Петравчук А. П. Математические заметки. 2009. Т. 86. № 5. С. 659-663.
Added: Jul 10, 2014
Article
Самовол В. С. Математические заметки. 2014. Т. 95. № 6. С. 911-925.

The asymptotic properties of nonoscillating solutions of Emden-Fowler-type equations of arbitrary order are considered. The paper contains the results of the study of the asymptotic properties of solutions with integer-valued asymptotics as well as of solutions arising from the rapid decrease of the coefficient of the equation. To analyze the asymptotic behavior of solutions of the equations, methods of power geometry are used.

Added: Feb 13, 2014
Article
Колесников А. В. Математические заметки. 1999. Т. 65. № 5. С. 790-793.
Added: Oct 4, 2010
Article
Курносов Н. М. Математические заметки. 2016. Т. 99. № 1.

We obtain an inequality imvolving Betti numbers of six-dimensional hyperk\"ahler manifolds using Rozansky-Witten invariants described by Hitchin and Sawon.

Added: Oct 16, 2015
Article
Логинов К. В. Математические заметки. 2019. Т. 106. № 6. С. 881-893.

We consider threefold del Pezzo fibrations over a curve germ whose central fiber is non-rational. Under the additional assumption that the singularities of the total space are at worst ordinary double points, we apply a suitable base change and show that there is a 1-to-1 correpspondence between such fibrations and certain non-singular del Pezzo fibrations equipped with a cyclic group action.

Added: Oct 29, 2019
Article
Чеботарев А. М., Теретенков А. Е. Математические заметки. 2012. Т. 92. № 6. С. 943-948.

We pdiscuss a constructive representation of R. Feynman formula for derivation of exonential families of noncommuting operators. 

Added: Dec 28, 2013
Article
Чистяков Д. С., Себельдин А. М. Математические заметки. 2008. Т. 84. № 6. С. 952-954.
Added: Oct 10, 2017
Article
Чистяков Д. С., Любимцев О. В., Вильданов В. К. Математические заметки. 2018. Т. 103. № 3. С. 365-372.
Added: Oct 10, 2017
Article
Самовол В. С. Математические заметки. 2012. Т. 92. № 5. С. 731-746.

In a neighborhood of a singular point, we consider autonomous systems of ordinary differential equations such that the matrix of the linearized system has two pure imaginary eigenvalues, all other eigenvalues lying outside the imaginary axis. The reducibility of such systems to pseudonormal form is studied.

Added: Dec 13, 2012
Article
В. В. Лебедев Математические заметки. 2012. Т. 91. № 6. С. 946-949.

We consider the space U(T) of all continuous functions on the circle T with uniformely convergent Fourier series. We obtain an estimate for the growth of the U -norms of exponential functions with an arbitrary piecewise linear phase and unboundedly growing integer frequences.

Added: Sep 29, 2012
Article
Самовол В. С. Математические заметки. 2014. Т. 95. № 5. С. 775-789.
The paper deals with solutions to Emden-Fowler-type equations of any arbitrary order. The asymptotic properties of solutions to these equations are studied, and a systematic surveyof numerous uncoordinated results of analysis of continuable and noncontinuable solutions is given.
Added: Apr 4, 2014
Article
Ефимова М. П. Математические заметки. 2011. Т. 90(3). С. 340-350.

We study the Titchmarsh Q-integral, its generalization, and its elementary properties are studied; integrability criteria on sets of finite measure are obtained.

Added: Dec 28, 2015
Article
Чистяков В. В. Математические заметки. 1995. Т. 58. № 3. С. 471-476.
Added: Jan 20, 2010
Article
В. Л. Попов Математические заметки. 2019. Т. 105. № 4. С. 589-591.

It is shown that the main result of N. R. Wallach, Principal orbit type theorems for reductive algebraic group actions and the Kempf–Ness Theorem, arXiv:1811.07195v1 (17 Nov 2018), is a special case of a more general statement, which can be deduced, using a short argument, from the classical Richardson and Luna theorems.

Added: Sep 29, 2019
Article
Грушин В. В., Доброхотов С. Ю. Математические заметки. 2014. Т. 95. № 3. С. 359-375.

The system of equations of gravity surface waves is considered in the case where the basin's bottom is given by a rapidly oscillating function against a background of slow variations of the bottom. Under the assumption that the lengths of the waves under study are greater than  the characteristic length of the basin bottom's oscillations but can be much less than the characteristic dimensions of the domain where these waves propagate, the adiabatic approximation is used to pass to a reduced homogenized equation of wave equation type or to the linearized Boussinesq equation with dispersion that is “anomalous” in the theory of surface waves (equations of wave equation type with added fourth derivatives).The rapidly varying solutions of the reduced equation can be found (and they were also found in the authors' works) by asymptotic methods, for example, by the WKB method, and in the case of focal points, by the Maslov canonical operator and its generalizations.

Added: May 21, 2014
Article
Брюнинг Й., Грушин В. В., Доброхотов С. Ю. Математические заметки. 2012. Т. 92. № 2. С. 163-180.

An example of Schrodinger and Klein-Gordon equations with fast oscillating coefficients is used to show that they can be averaged by an adiabatic approximation based on V.P. Maslov's operator method.

Added: Dec 24, 2012
Article
Аржанцев И. В. Математические заметки. 2002. Т. 71. № 6. С. 803-806.
Added: Jul 9, 2014