Article
A resultant system as the set of coefficients of a single resultant
We prove effective Nullstellensatz and elimination theorems for difference equations in sequence rings. More precisely, we compute an explicit function of geometric quantities associated to a system of difference equations (and these geometric quantities may themselves be bounded by a function of the number of variables, the order of the equations, and the degrees of the equations) so that for any system of difference equations in variables x=(x_1,…,x_m) and u=(u_1,…,u_r), if these equations have any nontrivial consequences in the x variables, then such a consequence may be seen algebraically considering transforms up to the order of our bound. Specializing to the case of m=0, we obtain an effective method to test whether a given system of difference equations is consistent.
We present a new upper bound for the orders of derivatives in the Rosenfeld–Gröbner algorithm under weighted rankings. This algorithm computes a regular decomposition of a radical differential ideal in the ring of differential polynomials over a differential field of characteristic zero with an arbitrary number of commuting derivations. This decomposition can then be used to test for membership in the given radical differential ideal. In particular, this algorithm allows us to determine whether a system of polynomial PDEs is consistent.
In the case of one derivation, such a bound was given by Golubitsky et al. (2008). The only known bound in the case of several derivations was given by the authors of the present paper in 2016. The bound was achieved by associating to the algorithm antichain sequences whose lengths can be bounded using the results of León Sánchez and Ovchinnikov (2016). In the present paper, the above result by the current authors is generalized and significantly improved.
I give the explicit formula for the (set-theoretical) system of Resultants of m+1 homogeneous polynomials in n+1 variables
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.