### Article

## Analysis of Multipole Electron Lenses Designed from the Sections of SlowWave Structures and Microwave DistributedInteraction Devices Based on Such Lenses

Microwave devices designed on the basis of multipole lenses (ring electromagnetic structures using resonant sections of slow-wave structures) are analyzed. The possibility of development on the basis of these lenses of a low-noise amplifier and a microwave multiplier, which ensure long-term interaction of the electron beam and the transversely extended electromagnetic field with continuous extraction of energy, is shown.

A portable wireless device for recharging batteries of vehicles, phones, and another apparatus is offered and described in this paper. Application of novel antennas, formed by sections of coupled radial spirals with dimensions significantly less than the operating wavelength in free space, makes it possible effective transmission RF energy from one object to another without radiation into surrounding medium.

In article methods of increase of accuracy of measure calculations of non-failure operation and durability of microwave devices which are widely applied both in household appliances, and in modern devices and systems of space engineering are considered. It is obvious that operability of such microwave devices is extremely important as their refusal conducts to failure of the radioelectronic equipment (REA) as a whole. Feature of microwave devices is that a large number of constructive (mechanical) components is their part. However, in case of an assessment of indicators of reliability of REA consider only electronic component base, accepting all constructive (mechanical) components highly reliable, almost not influencing sizes of indicators of nonfailure operation, durability and a keeping. In confutation of it in article the example of measure calculation of reliability of the microwave switchboard is given and need of accounting of mechanical components and temporary working schedules is proved.

This paper considers the model of amplification of electromagnetic millimeter waves by non-relativistic electron beams in one-dimensional periodic electrodynamic systems. As slow-wave structures are investigated systems such as “winding waveguide” and “counter-pins”-type suitable for use in the millimeter range. The main directions of research are: - development of a traveling-wave tube model on the basis of the differential theory of excitation of electrodynamic systems by currents; - modeling and calculation for simplified waveguide-resonator model of electrodynamic properties of slow-wave structures such as "winding waveguide" in the millimeter range; - representation of a waveguide-resonator model of "winding waveguide"-type slow-wave structure, composed of segments of rectangular and U-shaped waveguide; - obtaining by a waveguide-resonator model coefficients of the transmission matrix, which allows to analyze the dispersion and coupling impedance in the band of amplified frequencies; - investigation of “winding waveguide"-type slow-wave structure taking into account the geometric phase rotation field in neighboring gaps by linear waveguide-resonator model represented by a chain of quadripoles by means of opposite switching of the induced current in the neighboring interaction gaps and also the first spatial harmonic used in traveling-wave tubes for the calculation of the dispersion; - calculation of a number of options that characterize the basic laws of changes in the properties of “winding waveguide"-type slow-wave structure; - modeling the properties of slow-wave structures such as "winding waveguide" using 3D-codes; - application of the results obtained using the 3D-codes as the numerical experiment to adjust waveguide-resonator model; - model building pin-type slow-wave structures using waveguide-resonator model, customized by experimental reference points. The paper shows that for modeling slow-wave structures such as “winding waveguide” and “counter-pins” waveguide-resonator model customized to the experimentally obtained reference points can be used. As the reference points can also be used the values of deceleration and the coupling impedance obtained by numerical experiment using HFSS. Waveguide resonator models constructed in such way are sufficiently accurate and simple. This paper shows that these models can be successfully used for the calculation of traveling-wave tubes operating in the millimeter range.

The Asia-Pacific Conference on Antennas and Propagation (APCAP) is an international forum for the exchange of information on the progress and recent advancements in the research and development of innovative antenna technology and radio wave propagation. APCAP has been successfully inaugurated in Singapore in 2012 and held in Chiangmai in 2013, Harbin in 2014, Bali Island in 2015, Kaohsiung in 2016, and Xi’an in 2017 and Auckland in 2018. It will be held in Korea for the first time. APCAP 2019 will offer a rich scientific program of the highest quality with the keynote and invited speakers from all over the world and provide a broad forum of exchange for both academia and industry alike, with the aim of fostering the collaboration between them. The conference will cover a wide range of topics related to antenna technology, wave propagation, and electromagnetic theory. Prospective authors are invited to submit original contributions on their latest research findings and technology applications.

Electronic equipment of spacecraft is exposed to ionizing radiation of outer space, which is another reason for failure. Currently accepted to evaluate separately the reliability of electronic equipment and its radiation resistance, despite the fact that these phenomena are interrelated. The aim of the article is to estimate effects of ionizing radiation on the reliability of microwave devices, namely, the probability of failure-free operation of a microwave amplifier.

The probability of device failure model *Q*(*t*) for active lifetime is constructed as a product of the probabilities of failure *Q*1(*t*) - the probability of device failure due to set the total ionizing dose, *Q*2(*t*) - probability of failure of the device in the absence of exposure to ionizing radiation, *Q*3(*t*) - the probability of a single effect event. Probabilities *Q*2(*t*) and *Q*3(*t*) are valued at current normative documents. Probability *Q*1(*t*) is calculated based on probabilistic and physical models.

Research shows that, despite the high radiation resistance of microwave devices used in electronic equipment of spacecraft, when the long lifetime is required the low intensity radiation will have a tangible impact on the probability of failure. And that should be considered when designing equipment.

2019 International Siberian Conference on Control and Communications (SIBCON). Proceedings

In this paper, dispersion characteristics of "serpentine”-type slow-wave structures, which are promising for the terahertz range use, are calculated. For 3D-modeling, HFSS was used. Program described in work was used in the calculation. Using the obtained characteristics, octopole chain model of the slow-wave structure is constructed. Discrete approach is advisable in solving these problems. Justification of the applied mathematical model for the discrete interaction follows from the difference form of electrodynamic theory of excitation [3]. Requirements to coefficients of the resulting finite-difference equation are high, because their accuracy determines how close the mathematical model of the discrete interaction to the physical laws is. These coefficients have a certain electrodynamic sense and are obtained through the octopole transmission matrix coefficients. In turn, this octopole is a mathematical model of the resonator slow-wave structure cell.

A linear theory of the discrete interaction of electron beams and electromagnetic waves in slow-wave structures (SWS) is developed. The theory is based on the finite_difference equations of SWS excitation.The local coupling impedance entering these equations characterizes the field intensity excited by the electron beam in interaction gaps and has a finite value at SWS cutoff frequencies. The theory uniformly describes the electron–wave interaction in SWS passbands and stopbands without using equivalent circuits, a circumstance that allows considering the processes in the vicinity of cutoff frequencies and switching from the Cerenkov mechanism of interaction in a traveling wave tube to the klystron mechanism when passing to SWS stopbands. The features of the equations of the discrete electron–wave interaction in pseudoperiodic SWSs are analyzed.

Generalized error-locating codes are discussed. An algorithm for calculation of the upper bound of the probability of erroneous decoding for known code parameters and the input error probability is given. Based on this algorithm, an algorithm for selection of the code parameters for a specified design and input and output error probabilities is constructed. The lower bound of the probability of erroneous decoding is given. Examples of the dependence of the probability of erroneous decoding on the input error probability are given and the behavior of the obtained curves is explained.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.

This volume presents new results in the study and optimization of information transmission models in telecommunication networks using different approaches, mainly based on theiries of queueing systems and queueing networks .

The paper provides a number of proposed draft operational guidelines for technology measurement and includes a number of tentative technology definitions to be used for statistical purposes, principles for identification and classification of potentially growing technology areas, suggestions on the survey strategies and indicators. These are the key components of an internationally harmonized framework for collecting and interpreting technology data that would need to be further developed through a broader consultation process. A summary of definitions of technology already available in OECD manuals and the stocktaking results are provided in the Annex section.