### Article

## О моделировании счётчиков с бесконечным числом значений в обыкновенных сетях Петри

The book contains the necessary information from the algorithm theory, graph theory, combinatorics. It is considered partially recursive functions, Turing machines, some versions of the algorithms (associative calculus, the system of substitutions, grammars, Post's productions, Marcov's normal algorithms, operator algorithms). The main types of graphs are described (multigraphs, pseudographs, Eulerian graphs, Hamiltonian graphs, trees, bipartite graphs, matchings, Petri nets, planar graphs, transport nets). Some algorithms often used in practice on graphs are given. It is considered classical combinatorial configurations and their generating functions, recurrent sequences. It is put in a basis of the book long-term experience of teaching by authors the discipline «Discrete mathematics» at the business informatics faculty, at the computer science faculty* *of National Research University Higher School of Economics, and at the automatics and computer technique faculty of National research university Moscow power engineering institute. The book is intended for the students of a bachelor degree, trained at the computer science faculties in the directions 09.03.01 Informatics and computational technique, 09.03.02 Informational systems and technologies, 09.03.03 Applied informatics, 09.03.04 Software Engineering, and also for IT experts and developers of software products.

In this work we consider modeling of services with workflow modules, which are a subclass of Petri nets. The service compatibility problem is to answer the question, whether two Web services fit together, i.e. whether the composed system is sound. We study complementarity of service produced/consumed resources, that is a necessary condition for the service compatibility. Resources, which are produced/consumed by a Web service, are described as a multiset language. We define an algebra of multiset languages and present an algorithm for checking the conformance of resources for two given structured workflow modules.

In this work we consider modeling of workflow systems with Petri nets. To increase flexibility and give tools for workflow models re-engineering we extend the formalism of workflow nets by considering systems of interacting nets. Then we study soundness - the main correctness property of workflow processes - and show, that for a special class of structured workflow system soundness can be proved in compositional way.

Resource-driven automata (RDA) are finite automata, sitting in the nodes of a finite system net and asynchronously consuming/producing shared resources through input/output system ports (arcs of the system net). RDAs themselves may be resources for each other, thus allowing the highly flexible structure of the model. It was proved earlier, that RDA-nets are expressively equivalent to Petri nets. In this paper the new formalism of *cellular RDAs* is introduced. Cellular RDAs are RDA-nets with an infinite regularly structured system net. We build a hierarchy of cellular RDA classes on the basis of restrictions on the underlying grid. The expressive power of several major classes of 1-dimensional grids is studied.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.