### Article

## Locally bounded coverings and factorial properties of graphs

For a graph property X, let X_{n} be the number of graphs with vertex set {1, . . . , n} having property X, also known as the speed of X. A property X is called factorial if X is hereditary (i.e. closed under taking induced subgraphs) and n^{c1n} ≤ X_{n} ≤ n^{c2n} for some constants c_{1} and c_{2}. Hereditary properties with speed slower than factorial are surprisingly well structured. The situation with factorial properties is more complicated and less explored. Only the properties with speeds up to the Bell number are well studied and well behaved. To better understand the behavior of factorial properties with faster speeds we introduce a structural tool called locally bounded coverings and show that a variety of graph properties can be described by means of this tool.

For a graph property X, let X_{n} be the set of graphs with the vertex set {1, . . . , n} that satisfy the property X. A property X is called factorial if X is hereditary (i. e. closed under taking induced subgraphs) and n^{c1n} ≤ X ≤ n^{c2n} for some positive constants c_{1} and c_{2}. A graph G is a *quasi-line* if for every vertex v, the set of neighbors of v can be expressed as a union of two cliques. In the present paper we identify almost all factorial subclasses of quasi-line graphs defined by one forbidden induced subgraph. We use these new results to prove that the class Free(K_{1,3},W_{4}) is factorial, which improves on a result of Lozin, Mayhill and Zamaraev [8].

A graph is König for a q-path if every its induced subgraph has the following property. The maximum number of pairwise vertex-disjoint induced paths each on q vertices is equal to the minimum number of vertices, such that removing all the vertices produces a graph having no an induced path on q vertices. In this paper, for every q>4, we describe all Konig graphs for a q-path obtained from forests and simple sycles by replacing some vertices into graphs not containing induced paths on q vertices.

For a graph property X, let X_{n} be the number of graphs with vertex set {1, . . . , n} having property X, also known as the speed of X. A property X is called factorial if X is hereditary (i.e., closed under taking induced subgraphs) and n^{c1n} ≤ X_{n} ≤ n^{c2n} for some positive constants c_{1} and c_{2}. Hereditary properties with speed slower than factorial are surprisingly well structured. The situation with factorial properties is more complicated and less explored. To better understand the structure of factorial properties we look for minimal superfactorial ones. In [J.P. Spinrad, Nonredundant 1’s in *Γ*-free matrices, SIAM J. Discrete Math. 8 (1995) 251–257], Spinrad showed that the number of n-vertex chordal bipartite graphs is 2^{Θ(n log2n)}, which means that this class is superfactorial. On the other hand, all subclasses of chordal bipartite graphs that have been studied in the literature, such as forest, bipartite permutation, bipartite distance-hereditary or convex graphs, are factorial. In this paper, we study more hereditary subclasses of chordal bipartite graphs and reveal both factorial and superfactorial members in this family. The latter fact shows that the class of chordal bipartite graphs is not a minimal superfactorial one. Finding minimal superfactorial classes in this family remains a challenging open question.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.