Article
Автоматизация проектирования систем калибров при сортовой прокатке
Проблеми обчислювальної механіки і міцності конструкцій. 2011. № 16. С. 3-8.
Similar publications
Аксенов С. А., Логашина И. В., Чумаченко Е. Н. В кн.: Проблеми обсчислювальноï механiки i мiцностi конструкцiй. Вып. 16. Днепропетровск: Наука i освiта, 2011. С. 3-8.
Added: Apr 12, 2012
Логашина И. В., Чумаченко Е. Н., Аксенов С. А. Методи розв'язувания прикладних задач механiки деформiвного твердого тiла. 2011. № 12. С. 197-201.
Added: Apr 12, 2012
The technological process considered in the paper is a rolling of a round bar in roughing mill group, which consist of four passes. The computer simulation of the process shows that the local plastic deformations occurring in the material are extremely large, which may lead to the appearing of defects. The investigations performed, led to the development of new roll pass design, which almost halved the maximum value of local plastic deformation in the material during rolling. Since full 3D finite element method (FEM) based models needs significant amount of computer memory and CPU time, it was not suitable for the performed study, which involves a bulk of simulations with different initial conditions. Therefore, the quick algorithms for simulation of rolling processes, which based on so-called “2.5D” method, have been used. This method, due to number of simplifications, is significant faster than conventional 3D FEM, and at the same time it allows to reach good accuracy of the model. The developed computer software SPLEN(Rolling) which implements “2.5D” FEM simulations was applied for computations and analysis of the results. This software is able to predict the shape evolution of rolled material, as well as distributions of strain, strain rate and temperature within the volume of deformation zone. It has been shown that computer simulation based on “2.5D” FEM implemented in SPLEN(Rolling) software can be efficiently used for roll pass design development and optimization.
Added: Apr 12, 2012
Added: Oct 12, 2015
Алексеева Т. А. СПб.: Ленинградский государственный университет имени А.С. Пушкина, 2004.
Added: Feb 8, 2013
Energy conservation during hot shape rolling can be achieved by reducing of working temperature, optimization of rolling speed and calibration schedules, including a reduction of the passes number. For this, at the design stage of technology, it is necessary to produce a targeted search of the optimum characteristics associated with the large number of preliminary estimations and calculations. The speed of algorithms and techniques witch used in the process of the search plays a key role and directly determines its effectiveness. The paper describes the method of finite element simulation of shape rolling process based on «2,5 D» techniques, which is due to the number of simplifications, allows to increase the speed of calculation considerably (by comparison with 3D modeling). To verify this technique the comparison of model results with data obtained at a metallurgical plant «Třinecké železarny» in the special industrial experiment was performed. The comparison confirmed the adequacy and effectiveness of the proposed models and computer system developed on their basis.
Added: Apr 12, 2012
Логашина И. В., Чумаченко Е. Н., Аксенов С. А. В кн.: Методи розв’язування прикладних задач механiки деформiвного твердого тiла. Вып. 12. Днепропетровск: Наука i освiта, 2011. С. 197-201.
Added: Apr 12, 2012
Added: Apr 12, 2012
Грачев Н. Н., Лазарев Д. В. Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2012. № 3. С. 31-39.
Added: Nov 10, 2012
Соколова А. Г. М.: Издательство ИНЭП, 1998.
Added: Jan 25, 2013
Черников Б. В., Ильин В. В. М.: Издательский дом «Форум», 2010.
Added: Nov 29, 2012
Shutov V. V., Yehia M., Vavilova E. et al. Journal of Low Temperature Physics. 2010. Vol. 159. No. 1-2. P. 96-100.
Added: Apr 7, 2015
Ч. 1. М.: Энергоатомиздат, 2011.
Added: Feb 7, 2013
Парусникова А. В., Брюно А. Д. Институт прикладной математики им. М.В. Келдыша Российской академии наук, 2010. № 39.
Added: Apr 18, 2012
Deviatov R. arxiv.org. math. Cornell University, 2010. No. arXiv:1007.1353v1.
Let G be a semisimple algebraic group whose decomposition into the product of simple components does not contain simple groups of type A, and P⊆G be a parabolic subgroup. Extending the results of Popov [7], we enumerate all triples (G, P, n) such that (a) there exists an open G-orbit on the multiple flag variety G/P × G/P × . . . × G/P (n factors), (b) the number of G-orbits on the multiple flag variety is finite.
Added: Jun 28, 2012
Abramov Y. V. arxiv.org. math. Cornell University, 2011. No. arXiv:1111.4974v1.
I give the explicit formula for the (set-theoretical) system of Resultants of m+1 homogeneous polynomials in n+1 variables
Added: Jun 28, 2012