### Article

## Hodge level for weighted complete intersections

We give lower bounds for Hodge numbers of smooth well formed Fano weighted complete intersections. In particular, we compute their Hodge level, that is, the maximal distance between non-trivial Hodge numbers in the same row of the Hodge diamond. This allows us to classify varieties whose Hodge numbers are like that of a projective space, of a curve, or of a Calabi–Yau variety of low dimension.

We explore connections between birational anabelian geometry and abstract projective geometry. One of the applications is a proof of a version of the birational section conjecture.

We consider the conjectures of Katzarkov, Kontsevich, and Pantev about Landau--Ginzburg Hodge numbers associated to tamely compactifiable Landau--Ginzburg models. We test these conjectures in case of dimension two, verifying some and giving a counterexample to the other.

Rational homology groups of spaces of non-resultant (that is, having only trivial common zeros) systems of homogeneous quadratic polynomial systems in R^3 are calculated

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.