### Article

## Manifolds of isospectral matrices and Hessenberg varieties

We consider the space $X_h$ of Hermitian matrices having staircase form and the given simple spectrum. There is a natural action of a compact torus on this space. Using generalized Toda flow, we show that $X_h$ is a smooth manifold and its smooth type is independent of the spectrum. Morse theory is then used to show the vanishing of odd degree cohomology, so that $X_h$ is an equivariantly formal manifold. The equivariant and ordinary cohomology rings of $X_h$ are described using GKM-theory. The main goal of this paper is to show the connection between the manifolds $X_h$ and regular semisimple Hessenberg varieties well known in algebraic geometry. Both spaces $X_h$ and Hessenberg varieties form wonderful families of submanifolds in the complete flag variety. There is a certain symmetry between these families which can be generalized to other submanifolds of the flag variety.

Let G be an almost simple simply connected complex Lie group, and let G/U be its base affine space. In this paper we formulate a conjecture which provides a new geometric interpretation of the Macdonald polynomials associated to G via perverse coherent sheaves on the scheme of formal arcs in the affinizationof G/U. We prove our conjecture for G=SL(N) using the so called Laumon resolution of the space of quasimaps. In the course of the proof we also give a K-theoretic version of the main result of Negut.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

A periodic tridiagonal matrix is a tridiagonal matrix with additional two entries at the corners. We study the space $X_{n,\lambda}$ of Hermitian periodic tridiagonal $n\times n$-matrices with a fixed simple spectrum $\lambda$. Using the discretized S\edt{c}hr\"{o}dinger operator we describe all spectra $\lambda$ for which $X_{n,\lambda}$ is a topological manifold. The space $X_{n,\lambda}$ carries a natural effective action of a compact $(n-1)$-torus. We describe the topology of its orbit space and, in particular, show that whenever the isospectral space is a manifold, its orbit space is homeomorphic to $S^4\times T^{n-3}$. There is a classical dynamical system: the flow of the periodic Toda lattice, acting on $X_{n,\lambda}$. Except for the degenerate locus $X_{n,\lambda}^0$, the Toda lattice exhibits Liouville--Arnold behavior, so that the space $X_{n,\lambda}\setminus X_{n,\lambda}^0$ is fibered into tori. The degenerate locus of the Toda system is described in terms of combinatorial geometry: its structure is encoded in the special cell subdivision of a torus, which is obtained from the regular tiling of the euclidean space by permutohedra. We apply methods of commutative algebra and toric topology to describe the cohomology and equivariant cohomology modules of $X_{n,\lambda}$.

Let G be a reductive group and let ·G be its Langlands dual. We give an interpretation of the dynamical Weyl group of ·G de¯ned in [5] in terms of the geometry of the a±ne Grassmannian Gr of G. In this interpretation the dynamical parameters of [5] correspond to equivariant parameters with respect to certain natural torus acting on Gr. We also present a conjectural generalization of our results to the case of a±ne Kac-Moody groups.

A toric origami manifold is a generalization of a symplectic toric manifold (or a toric symplectic manifold). The origami symplectic form is allowed to degenerate in a good controllable way in contrast to the usual symplectic form. It is widely known that symplectic toric manifolds are encoded by Delzant polytopes, and the cohomology and equivariant cohomology rings of a symplectic toric manifold can be described in terms of the corresponding polytope. Recently, Holm and Pires described the cohomology of a toric origami manifold M/T when

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.