Article
Spoof plasmons enable giant Raman scattering enhancement in Near-Infrared region
Exceptionally strong enhancement of the Raman signal exceeding eight orders of magnitude for near-infrared (1064 nm) excitation is demonstrated for an array of dielectric submicron pillars covered by a relatively thick metal layer. The microstructure is designed to support ‘spoof’ plasmon-polariton excitations with resonant frequencies significantly below the fundamental surface plasmon resonance. Experiments reveal a relatively narrow range of spatial parameters for the optimal resonant scattering enhancement. They include a period close to the excitation wavelength, a specific ratio of the pillar planar size to the period, and optimal heights of both the pillars and the covering silver metal layer. The realized microstructures can be produced by fab-compatible photolithography techniques, and their outstanding sensing possibilities open the venue for the biomedical applications.
Apart from the main plasmon-polariton resonance of the surface-enhanced Raman scattering (SERS) occurring at 480 - 530 nm, an additional resonance was observed for substrates with two silver layers separated by a dielectric layer which support extra plasmon modes with decreased group velocities. The novel SERS resonance is shifted towards lower energies and has comparable amplitude,its exact energy position being determined by the thickness of the dielectric interlayer. The experimental findings provide a ground for the engineering of SERS-substrates with the spectral position of the additional resonance matched with the photon energy of the pump laser over a fairly wide range of laser wavelengths.
The possibilities of obtaining ordered gold nanoarrays on sapphire surfaces with oriented nanorelief are demonstrated. The structures are morphologically described using atomic force microscopy data. A study of the angular dependence of the reflectivity in the visible range of electromagnetic waves has revealed some features which are likely to indicate surface plasmon-polariton excitation at the air-gold interface under exposure to p-polarized radiation. The experimental results are found to be in good agreement with the theoretical calculations.
International Conference on Micro- and Nano-Electronics 2016
We report room temperature injection lasing in the yellow–orange spectral range (599–605 nm) in (AlxGa1–x)0.5In0.5P–GaAs diodes with 4 layers of tensilestrained InyGa1–yP quantum dot-like insertions. The wafers were grown by metal–organic vapor phase epitaxy side-by-side on (811), (211) and (322) GaAs substrates tilted towards the <111> direction with respect to the (100) surface. Four sheets of GaP-rich quantum barrier insertions were applied to suppress leakage of non-equilibrium electrons from the gain medium. Laser diodes having a threshold current densities of ~7–10 kA/cm2 at room temperature were realized for both (211) and (322) surface orientations at cavity lengths of ~1mm. Emission wavelength at room temperature ~600 nm is shorter by ~8 nm than previously reported. As an opposite example, the devices grown on (811) GaAs substrates did not show lasing at room temperature.
This volume contains the papers presented at the session "Data Science" within the V International Conference on Information Technology and Nanotechnology (ITNT-2019). The conference was held in Samara, Russia, during May 21-24, 2019 (itnt-conf.org). The conference is a forum for leading researchers from all over the world aimed to discuss the latest advances in the basic and applied research in the field of Information Technology and Nanotechnology. It is also aimed to attract young people to advanced scientific research and share the latest trends in training and research programs for future ITNT specialists [1]. In addition to the session "Data Science", ITNT-2019 also included three other sessions: "Computer Optics and Nanophotonics", "Image Processing and Earth Remote Sensing" and "Mathematical Modeling of Physico-Technical Processes and Systems". The whole forum brought together more than 450 scientists from United Kindom, Japan, Switzerland, Iran, Poland, Bulgaria, Finland, China, Kazakhstan and Russia, as well as representatives of global high-tech corporations, developers of modern electronics – Huawei, Nvidia, Intel, and Azimuth Photonics, and more than 60 cities in the world. 436 talks enabled discussion on a wide range of topics. The topics of the session "Data Science" were grouped into the following key directions: Data Mining (Big data, Systems and platforms, Methods); Machine Learning (Neural networks, Statistical methods, Feature-based classification, Applications); Security, Cryptography (Cryptosystems design and analysis, Mathematical and algorithmic aspects, Efficient implementations of algorithms, Network security); High Performance Computing (Parallel programming models and languages, Highperformance implementations, Complex systems simulation).
The swelling of a poly (methyl methacrylate) in supercritical carbon dioxide was studied by means of full atomistic classical molecular dynamics simulation. In order to characterize the polymer swelling, we calculated various properties related to the density, structure, and dynamics of polymer chains as a function of the simulation time, temperature, and pressure. In addition, we compared the properties of the macromolecular chains in supercritical CO2 with the properties of the corresponding bulk system at the same temperature and atmospheric pressure. It was shown that diffusion of CO2 molecules into the polymer led to a significant increase in the chain mobility and distances between them. Analysis of diffusion coefficients of CO2 molecules inside and outside the poly(methyl methacrylate) sample has shown that carbon dioxide actively interacts with the functional groups of poly (methyl methacrylate). Joint analysis of the radial distribution functions obtained from classical molecular dynamics and of the averaging interatomic distances from Car-Parrinello molecular dynamics allows us to make a conclusion about the possibility of formation of weak hydrogen bonds between the carbon dioxide oxygen atom and the hydrogen atoms of the polymer methyl groups.
We report the first experimental evidence for the mitogenic action of cerium(IV) oxide and cerium(III) fluoride nanoparticles (CONs and CFNs) on the regeneration of a whole organism – freshwater flatworms Schmidtea mediterranea (planarian). Both types of cerium-containing nanoparticles are shown to be a highly potent mitogen for planaria. Both CONs and CFNs, in micro- and nanomolar concentrations, markedly accelerate planarian blastema growth, due to the enhancement of cellular proliferation, causing an increase in the mitotic index and in the quantity of blastema cells in regenerating planaria. CONs provided maximum activity at concentrations which were two orders of magnitude lower than those for CeF3. The valence state of cerium in cerium-containing nanoparticles plays a significant role in the planarian regeneration mechanism: CeO2 nanoparticles containing predominantly Ce4+ species presumably scavenge wound induced reactive oxygen species and moderately activate gene expression processes, while the regenerative action of CeF3 nanoparticles containing only Ce3+ species is manifested in the pronounced expression of the genes involved in cell division, differentiation and migration. This is the first report on the effect of cerium-containing nanoparticles on tissue regeneration in vivo, further revealing the mechanisms of their biological action, which enhances the possibility of their use in cellular technologies.
This volume presents new results in the study and optimization of information transmission models in telecommunication networks using different approaches, mainly based on theiries of queueing systems and queueing networks .
The paper provides a number of proposed draft operational guidelines for technology measurement and includes a number of tentative technology definitions to be used for statistical purposes, principles for identification and classification of potentially growing technology areas, suggestions on the survey strategies and indicators. These are the key components of an internationally harmonized framework for collecting and interpreting technology data that would need to be further developed through a broader consultation process. A summary of definitions of technology already available in OECD manuals and the stocktaking results are provided in the Annex section.