### Article

## Perverse schobers and birational geometry

Perverse schobers are conjectural categorical analogs of perverse sheaves.

We show that such structures appear naturally in Homological Minimal Model Program

which studies the effect of birational transformations such as flops, on the

coherent derived categories. More precisely, the flop data are analogous to hyperbolic

stalks of a perverse sheaf. In the first part of the paper we study schober-type

diagrams of categories corresponding to flops of relative dimension 1, in particular

we determine the categorical analogs of the (compactly supported) cohomology with

coefficients in such schobers. In the second part we consider the example of a “web of

flops” provided by the Grothendieck resolution associated to a reductive Lie algebra g

and study the corresponding schober-type diagram. For g = sl3 we relate this diagram

to the classical space of complete triangles studied by Schubert, Semple and others.

We introduce the notions of consistent pairs and consistent chains of $ t$-structures and prove that two consistent chains of $ t$-structures generate a distributive lattice. The technique developed is then applied to the pairs of chains obtained from the standard $ t$-structure on the derived category of coherent sheaves and the dual $ t$-structure by means of the shift functor. This yields a family of $ t$-structures whose hearts are known as perverse coherent sheaves. Access this article Login options Individual login Institutional loginvia Athens/Shibboleth The computer you are using is not registered by an institution with a subscription to this article. Please log in below. Find out more about journal subscriptions at your site. Purchase this article online Buy this article £33.00 (£39.60 incl. VAT) $59.70 US Dollar price There are no additional delivery charges. By purchasing this article, you are accepting IOP's Terms and Conditions for Document Delivery. If you would like to buy this article, but not online, please contact custserv@iop.org. Make a recommendation To gain access to this content, please complete the Recommendation Form and we will follow up with your librarian or Institution on your behalf. For corporate researchers we can also follow up directly with your R&D manager, or the information management contact at your company. Recommend this journal Institutional subscribers have access to the current volume, plus a 10-year back file (where available). Subscribe to this journal The title that you are trying to access is not part of the IOP Historic Archive. You can purchase a copy of the article that you wish to view. Related Articles Hyperplane sections and derived categories Derived categories of coherent sheaves and equivalences between them PROJECTIVE BUNDLES, MONOIDAL TRANSFORMATIONS, AND DERIVED CATEGORIES OF COHERENT SHEAVES More Related Review Articles Classification of isomonodromy problems on elliptic curves Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field Geometric structures on moment-angle manifolds More

All classes of integrable cocycles in H2(L,L) are obtained for Lie algebra of type G2 over an algebraically closed field of characteristic 2. It is proved that there exist only two orbits of classes of integrable cocycles with respect to automorphism group. The global deformation is shown to exist for any nontrivial class of integrable cocycles. These deformations are isomorphic to one of the two algebras of Cartan type, one of which being S(3:1,ω) while the other H(4:1,ω).

abstract

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.