### Article

## Yang-Baxter equations with two Planck constants

We consider Yang–Baxter equations arising from its associative analog and study the corresponding exchange relations. They generate finite-dimensional quantum algebras which have the form of coupled &${\rm{GL}}(N)$; Sklyanin elliptic algebras. Then we proceed to a natural generalization of the Baxter–Belavin quantum R-matrix to the case &${\rm{Mat}}{(N,{\mathbb{C}})}^{\otimes 2}\otimes {\rm{Mat}}{(M,{\mathbb{C}})}^{\otimes 2}.$; It can be viewed as symmetric form of &${\rm{GL}}({NM})\;$; R-matrix in the sense that the Planck constant and the spectral parameter enter (almost) symmetrically. Such type (symmetric) R-matrices are also shown to satisfy the Yang–Baxter like quadratic and cubic equations.

We discuss the general opportunity to create (asymptotically) a comletely integrable system from the original perturbed system by inserting additional perturbing terms. After such an artificial insertion, there appears an opportunity to make the secondary averaging and secondary reduction of the original system. Thus, by this way, the $3D$-system becomes $1$-dimensional. We demonstrate this approach by the example of a resonance Penning trap.

This is a lecture note based on the series of lectures on the dispersionless integrable hierarchies delivered by the authore in June, 2013, at the Rikkyo University, Tokyo, Japan. The contents are survey on dispersionless integrable hierarchies, including introduction to integrable systems in general, and on their connections with complex analysis.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.