### ?

## Характеры пространств Фейгина-Стояновского и теорема Бриона

Функциональный анализ и его приложения. 2015. Т. 49. № 1. С. 18-30.

Makhlin I.

Makhlin I., Selecta Mathematica, New Series 2015

We exploit the idea that the character of an irreducible finite dimensional $\mathfrak{gl}_n$-module is the sum of certain exponents of integer points in a Gelfand-Tsetlin polytope and can thus be calculated via Brion's theorem. In order to show how the result of such a calculation matches Weyl's character formula we prove some interesting combinatorial traits ...

Added: September 29, 2014

Feigin E., Makedonskyi I., Journal of Combinatorial Theory, Series A 2015 P. 60-84

The Cherednik–Orr conjecture expresses the t →∞limit of the nonsymmetric Macdonald polynomials in terms of the PBW twisted characters of the affine level one Demazure modules. We prove this conjecture in several special cases. ...

Added: May 20, 2015

Shirokov D., Марчук Н. Г., Красанд/URSS, 2020

The book deals with several actual branches of Clifford algebra theory. Clifford algebras are used in mathematics, physics, mechanics, engineering, signal processing, etc. We discuss in details a representation theory of Clifford algebras. Also we discuss the connection between spin and orthogonal groups, Pauli theorem. We develop a method of quaternion typification of Clifford algebra ...

Added: December 11, 2020

Gritsenko V., Успехи математических наук 2018 Т. 73 № 5 С. 53-122

Рефлективные модулярные формы ортогонального типа — это фундаментальные автоморфные объекты, обобщающие классическую эта-функцию Дедекинда. В этой статье мы опишем в терминах форм Якоби две конструкции для построения таких модулярных форм: автоморфные произведения и подъем Якоби. В частности, мы докажем, что первый коэффициент Фурье--Якоби модулярной формы Борчердса $\Phi_{12}$
(производящая функция для ``Fake Monster Lie Algebra’’) в любом из 23 ...

Added: October 2, 2018

Braverman A., Michael Finkelberg, / Cornell University. Series math "arxiv.org". 2014.

In this note, we extend the results of arxiv:1111.2266 and arxiv:1203.1583 to the non simply laced case. To this end we introduce and study the twisted zastava spaces. ...

Added: February 5, 2015

Feigin E., Makedonskyi I., Orr D., Advances in Mathematics 2018 Vol. 330 P. 997-1033

We introduce generalized global Weyl modules and relate their graded characters to nonsymmetric Macdonald polynomials and nonsymmetric q-Whittaker functions. In particular, we show that the series part of the nonsymmetric q-Whittaker function is a generating function for the graded characters of generalized global Weyl modules. ...

Added: September 13, 2018

Feigin E., Makedonskyi I., / Cornell University. Series arXiv "math". 2015. No. 1507.01362.

The main goal of our paper is to establish a connection between the Weyl modules of the current Lie superalgebras (twisted and untwisted) attached to osp(1,2) and the nonsymmetric Macdonald polynomials of types $A_2^2$ and ${A_2}^{2\dagger}$ . We compute the dimensions and construct bases of the Weyl modules. We also derive explicit formulas for the ...

Added: July 8, 2015

Feigin E., Makhlin I., / Cornell University. Series math "arxiv.org". 2016. No. arXiv:1604.08844.

FFLV polytopes describe monomial bases in irreducible representations of sln. We study various sets of vertices of FFLV polytopes. First, we prove the locality of set of vertices with respect to the type A Dynkin diagram. Second, we describe all the permutation vertices. Third, we describe all the simple vertices and prove that their number ...

Added: May 6, 2016

Levin A., Olshanetsky M., Zotov A., / Cornell University. Series math "arxiv.org". 2014.

We construct special rational ${\rm gl}_N$ Knizhnik-Zamolodchikov-Bernard
(KZB) equations with $\tilde N$ punctures by deformation of the corresponding
quantum ${\rm gl}_N$ rational $R$-matrix. They have two parameters. The limit
of the first one brings the model to the ordinary rational KZ equation. Another
one is $\tau$. At the level of classical mechanics the deformation parameter
$\tau$ allows to extend the ...

Added: January 23, 2015

Michael Finkelberg, Schechtman V., / Cornell University. Series math "arxiv.org". 2014.

We reformulate the De Concini -- Toledano Laredo conjecture about the monodromy of the Casimir connection in terms of a relation between the Lusztig's symmetries of quantum group modules and the monodromy in the vanishing cycles of factorizable sheaves. ...

Added: January 30, 2015

Braverman A., Michael Finkelberg, Nakajima H., / Cornell University. Series math "arxiv.org". 2014.

We describe the (equivariant) intersection cohomology of certain moduli spaces ("framed Uhlenbeck spaces") together with some structures on them (such as e.g.\ the Poincar\'e pairing) in terms of representation theory of some vertex operator algebras ("W-algebras"). ...

Added: January 30, 2015

Feigin B. L., Функциональный анализ и его приложения 2014 № 3

We study commutative vertex operator algebras. These algebras are isomorphic to certain subalgebras in Kac-Moody vertex operator algebras. We describe systems of relations and degenerations to quadratic algebras. Our approach leads to the fermionic formulas for characters. ...

Added: April 14, 2014

Р. А. Девятов, Математический сборник 2011 Т. 202 № 10 С. 31-54

A family of neighbourly polytopes in R2d with N=2d+4 vertices is constructed. All polytopes in the family have a planar Gale diagram of a special type, namely, with exactly d+3 black points in convex position. These Gale diagrams are parametrized by 3-trees (trees with a certain additional structure). For all polytopes in the family, the ...

Added: June 28, 2012

Rovinsky M., / Cornell University. Series math "arxiv.org". 2014.

In this note the smooth (i.e. with open stabilizers) linear and {\sl semilinear} representations of certain permutation groups (such as infinite symmetric group or automorphism group of an infinite-dimensional vector space over a finite field) are studied. Many results here are well-known to the experts, at least in the case of {\sl linear representations} of ...

Added: September 17, 2014

Braverman A., Rybnikov L. G., Feigin B. L. et al., Communications in Mathematical Physics 2011 Vol. 308 No. 2 P. 457-478

Recently Alday, Gaiotto and Tachikawa proposed a conjecture relating 4-dimensional super-symmetric gauge theory for a gauge group G with certain 2-dimensional conformal field theory. This conjecture implies the existence of certain structures on the (equivariant) intersection cohomology of the Uhlenbeck partial compactification of the moduli space of framed G-bundles on P^2. More precisely, it predicts ...

Added: May 12, 2012

Brav C. I., Thomas H., Mathematische Annalen 2011 Vol. 351 No. 4 P. 1005-1017

We establish faithfulness of braid group actions generated by twists along an ADE configuration of 22-spherical objects in a derived category. Our major tool is the Garside structure on braid groups of type ADE. This faithfulness result provides the missing ingredient in Bridgeland's description of a space of stability conditions associated to a Kleinian singularity. ...

Added: September 29, 2014

Bezrukavnikov R., Finkelberg M. V., / Cornell University. Series math "arxiv.org". 2012. No. 1208.3696.

Mark Haiman has reduced Macdonald positivity conjecture to a statement about geometry of the Hilbert scheme of points on the plane, and formulated a generalization of the conjectures where the symmetric group is replaced by the wreath product $S_n\ltimes (Z/r Z)^n$. He has proven the original conjecture by establishing the geometric statement about the Hilbert ...

Added: February 6, 2013

Bershtein M., Gavrylenko P., Marshakov A., / arXiv.org. Series arXiv.org "hep-th". 2017. No. 1705.00957.

We study twist-field representations of the W-algebras and generalize the construction of the corresponding vertex operators to D- and B-series. We demonstrate how the computation of characters of such representations leads to the nontrivial identities involving lattice theta-functions. We propose a construction of their exact conformal blocks, which for D-series express them in terms of ...

Added: May 4, 2017

Shirokov D., Marchuk N., Advances in Applied Clifford Algebras 2008 Vol. 18 No. 2 P. 237-254

For the complex Clifford algebra <img /> (p, q) of dimension n = p + q we define a Hermitian scalar product. This scalar product depends on the signature (p, q) of Clifford algebra. So, we arrive at unitary spaces on Clifford algebras. With the aid of Hermitian idempotents we suggest a new construction of, so called, normal matrix representations of Clifford algebra elements. These ...

Added: June 16, 2015

Feigin E., Makedonskyi I., / Cornell University. Series math "arxiv.org". 2014. No. 1407.6316.

The Cherednik-Orr conjecture expresses the t\to\infty limit of the nonsymmetric Macdonald polynomials in terms of the PBW twisted characters of the affine level one Demazure modules. We prove this conjecture in several special cases. ...

Added: August 10, 2014

Ростислав Девятов, / Cornell University. Серия math "arxiv.org". 2009. № arXiv:0902.1435v1 [math.CO].

In the article, a series of neigbourly polyhedra is constructed. They have N=2d+4 vertices and are embedded in R2d. Their (affine) Gale diagrams in R2 have d+3 black points that form a convex polygon. These Gale diagams can be enumerated using 3-trees (trees with some additional structure). Given d and m, each of the constructed ...

Added: February 23, 2013

Alexander I. Efimov, / Cornell University. Series math "arxiv.org". 2014.

In this paper we study the derived categories of coherent sheaves on Grassmannians Gr(k,n), defined over the ring of integers. We prove that the category D^b(Gr(k,n)) has a semi-orthogonal decomposition, with components being full subcategories of the derived category of representations of GL_k. This in particular implies existence of a full exceptional collection, which is ...

Added: February 2, 2015

Cruz Morales J. A., Galkin S., / Cornell University. Series math "arxiv.org". 2013. No. 1301.4541.

In this note we provide a new, algebraic proof of the excessive Laurent phenomenon for mutations of potentials (in the sense of [Galkin S., Usnich A., Preprint IPMU 10-0100, 2010]) by introducing to this theory the analogue of the upper bounds from [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1-52]. ...

Added: May 27, 2013

Positselski L., Arkhipov S., Rumynin D., Basel : Birkhauser/Springer, 2010

We develop the basic constructions of homological algebra in the (appropriately defined) unbounded derived categories of modules over algebras over coalgebras over noncommutative rings (which we call semialgebras over corings). We define double-sided derived functors SemiTor and SemiExt of the functors of semitensor product and semihomomorphisms, and construct an equivalence between the exotic derived categories ...

Added: March 19, 2013