• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Compact leaves of structurally stable foliations

We prove that any compact manifold whose fundamental group contains an abelian normal subgroup of positive rank can be represented as a leaf of a structurally stable suspended foliation on a compact manifold. In this case, the role of a transversal manifold can be played by an arbitrary manifold. We construct examples of structurally stable foliations that have a compact leaf with infinite solvable fundamental group which is not nilpotent. We also distinguish a class of structurally stable foliations each of whose leaves is compact and locally stable in sense of Ehresmann and Reeb.