• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Ruled Laguerre minimal surfaces

Mathematische Zeitschrift. 2012. Vol. 272. P. 645-674.
Mikhail Skopenkov, Pottmann H., Grohs P.

A Laguerre minimal surface is an immersed surface in the Euclidean space being an extremal of the functional \int (H^2/K - 1) dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces R(u,v) = (Au, Bu, Cu + D cos 2u) + v (sin u, cos u, 0), where A, B, C, D are fixed real numbers. To achieve invariance under Laguerre transformations, we also derive all Laguerre minimal surfaces that are enveloped by a family of cones. The methodology is based on the isotropic model of Laguerre geometry. In this model a Laguerre minimal surface enveloped by a family of cones corresponds to a graph of a biharmonic function carrying a family of isotropic circles. We classify such functions by showing that the top view of the family of circles is a pencil.