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Abstract—Neuroeconomics, an emerging field blending neuro-
biology and economic theory, investigates decision-making and
reinforcement learning. Grounded in early Russian and Soviet
research, this field examines how dopaminergic circuits assess
and choose favorable options based on sensory, motivational,
and cognitive inputs. Traditional decision-making models often
overlook perceptual changes linked to reinforcement learning.
Modern theories suggest that sensory cortex adaptability, influ-
enced by reinforcement, plays a critical role in decision-making.

Our study aims to integrate sensory plasticity into neuroeco-
nomic models, providing a comprehensive understanding of how
experiences and repeated behaviors affect sensory cortex reorga-
nization and decision-making. We developed an audio version of
a lottery-like one-armed bandit task to explore the dynamics of
reinforcement learning and its relationship with neuroplasticity
markers (MMN, P3a, and brain oscillatory activity).

The study involved 29 participants who chose between two
audio-encoded options with different reward probabilities. EEG
data were recorded and analyzed using custom Python scripts
and the MNE library. Artifact removal and segmentation were
performed, focusing on the Cz electrode due to its prominent
amplitude expression.

A repeated measures ANOVA revealed significant differences
in responses to standard and deviant sounds before and after the
game, and between sounds encoding large and small losses. These
findings highlight the role of sensory neuroplasticity in decision-
making and underscore the importance of incorporating sensory
changes in reinforcement learning models. This study enhances
our understanding of the interaction between sensory input and
reinforcement learning in shaping behavior.

Index Terms—one-arm bandit task, P2, decision-making, neu-
roplasticity

I. INTRODUCTION

Neuroeconomics, a relatively new interdisciplinary field

at the crossroads of neurobiology and economic theory [1],

emerged from foundational research in Russian and Soviet

psychophysiology. Pavlov’s theories on conditioned reflex

activity and Anokhin’s functional systems theory have laid

the groundwork for contemporary studies into decision-making

and the neurobiology of reinforcement learning [2]. Mod-

ern neuroeconomics emphasizes a mechanistic model where
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specialized dopaminergic neural circuits evaluate options and

select the most favorable one based on various sensory, moti-

vational, and cognitive inputs [3].

Key areas of current research in neuroeconomics include

understanding how stimulus-reinforcement associations form,

analyzing the dynamics of such learning, and assessing its

impact on behavior and physiological responses. [4, 5] Stud-

ies have shown the critical role of dopaminergic neurons

in decision-making and behavioral adjustments. Additionally,

cognitive research has highlighted the adaptability of the

sensory cortex due to exposure and repeated actions. [6-

10] However, classical decision-making models do not fully

account for perceptual changes at the sensory input level

associated with reinforcement learning [2].

Modern neuroeconomic theory identifies several stages in

decision-making [2]: forming a representation of the task and

context, evaluating the expected value of behavioral options,

comparing options, executing the chosen action, and learning

from the outcomes to improve future decisions. Most studies

focus on the evaluation phase, aiming to understand how

organisms from microorganisms to humans optimize their

strategies for survival by forecasting the potential benefits and

probabilities of different options.

Previous research on neuroplasticity related to decision-

making, especially concerning monetary incentives, often em-

ploys the anticipated utility/value doctrine, which integrates

reward size and probability [11-13]. However, the practical

selection process between alternatives is more complex, as

shown by Kahneman and Tversky. Despite this, the size of

the reward and the probability of obtaining it are crucial in

basic experimental scenarios [14].

While biologists and economists have extensively studied

the neurobiology of expected value [2, 18], the specific mech-

anisms of the brain’s computation of these parameters remain

unclear.

Reinforcement learning theory formalizes flexible decision-

making by focusing on prediction error—the difference be-

tween expected and actual outcomes. Feedback allows indi-

viduals to adjust their predictions and choose options based on



past experiences and future expectations. Recent studies also

highlight the significance of sensory cortex plasticity, influ-

enced by the reinforcement of stimuli, in affecting subsequent

behavior.

Despite numerous studies on sensory system plasticity,

particularly the auditory system, many current reinforcement

learning models do not consider changes in sensory input.

However, evidence shows that sensory neuroplasticity plays

a role in decision-making, with sensory cortex adaptations oc-

curring even with unconscious stimulus recognition [8-10, 16-

17]. This calls for a decision-making model that incorporates

sensory information reorganization due to learning outcomes.

So, integrating sensory plasticity into neuroeconomic mod-

els of decision-making can enhance our understanding of how

experience and repeated behavior influence sensory cortex re-

organization, ultimately affecting decision-making processes.

This approach will provide a more comprehensive under-

standing of the dynamic interplay between sensory input and

reinforcement learning in shaping behavior.

Our previous research [18-20] has examined neuroplasticity

related to auditory reception in the human brain. Thas study

utilized an adapted version of the monetary incentive delay

(MID) task [21], where auditory cues replaced visual ones

to explore stimulus-reinforcement relationships. Using elec-

troencephalography (EEG), it was observed that reinforcement

learning correlates with adaptive changes in the auditory cor-

tex. An auditory adaptation of the MID task revealed increased

neural activity and sensory plasticity linked to reinforcement

signals [22].

Regression analyses indicated a positive correlation be-

tween sensory plasticity and control processes, suggesting

that association learning dynamics may predict sensory cortex

plasticity. Notably, when the MID task involved monetary loss,

an increase in mismatch negativity (MMN) for auditory cues

predicting significant loss was observed [20].

Despite evidence of sensory cortical plasticity induced

by learning, current models of reinforcement learning and

decision-making often assume constant sensory input. Re-

search suggests sensory plasticity can be induced by repeated

decision-making, with early neural encoding of expected re-

wards affecting initial sensory processing.

In the auditory domain, research on reinforcement learning-

induced neuroplasticity is limited, with notable exceptions

from the HSE University. The MID task, primarily an instru-

mental learning task, lacks elements of choice and accurate

task performance assessment crucial for reward-based learning

models.

We developed a new audio version of the lottery, a mod-

ified one-armed bandit task. This task required participants

to choose between two audio-encoded options with different

reward probabilities, allowing for the study of reinforcement

learning dynamics.

The relationship between operant learning and neuroplas-

ticity markers (MMN, P3a, and brain oscillatory activity)

was investigated. Two sessions of the oddball task, conducted

before and after the modified one-armed bandit task, aimed to

record electrophysiological correlates of neuroplastic changes

due to repeated decision-making.

We created a novel audio version of a lottery-like one-

armed bandit task. Participants had to choose between two

options, each with a distinct expected outcome, allowing the

examination of behavioral patterns in reinforcement learning

(RL).

The new task overcomes the limitations of the MID task

because it involves active choice on the part of the participant.

Additionally, the task allows for the examination of evoked

potential dynamics in mixed feedback scenarios, contributing

to understanding cortical feedback processing mechanisms.

This can enhance the assessment of learning efficacy and

the development of novel methodologies in neuroeconomic

studies.

We created a novel audio version of a lottery-like one-armed

bandit task. Participants had to choose between two options,

each with a distinct expected outcome, allowing the exami-

nation of behavioral patterns in reinforcement learning (RL).

This adaptation enabled to link learning and neuroplasticity in

active choice.

II. METHODOLOGY

A. Participants

The study involved a total of 29 participants, comprising

13 males and 14 females. The average age of the participants

was 24 years. All participants were right-handed, had normal

or corrected vision, and did not have any neuropsychiatric

disorders.

B. Equipment

The electroencephalogram (EEG) was recorded using a

setup of 32 active electrodes placed according to the 10-

20 system. The average value from electrodes 10 and 21,

positioned on the ears, served as the referent. The ground

electrode (ground) was positioned in place of electrode Fpz.

Additionally, an oculogram was recorded using electrode 27

under the right eye and electrode 5 on the outer corner of the

left eye. The electrodes were maintained at a resistance level

of no more than 10 kOhm.

The recording was conducted using a BrainVision ac-

tiCHamp amplifier (Brain Products GmbH) at a sampling

frequency of 500 Hz. A 50 Hz notch filter was applied to

eliminate electrical device frequency, and the data were further

filtered within the 1-40 Hz band. This was followed by a block

of the game itself, after which the subjects were once again

presented with the oddball task.

C. Stimulus

The stimulus material consisted of a set of ten sounds, which

were divided into four blocks. These sounds were created

using PRAAT software exclusively for this study. Each block

had specific frequencies assigned to the sounds.

The frequencies employed in Block 1 were 272 Hz and 502

Hz, in Block 2 – 381 Hz and 637 Hz, in Block 3 – 325 Hz and

568 Hz, and in Block 4 – 440 Hz and 711 Hz. Additionally, a



specific oddball-task paradigm utilised frequencies of 208 Hz

and 772 Hz.

Each sound was presented for a duration of 200 ms, with a

volume of 70 dB, as measured using a sound intensity meter.

D. Procedure

The game comprised four blocks. The first block comprised

an explanation of the task, followed by two blocks of the game,

a break, two more blocks of the game, and finally the results

were announced. Each block of the game comprised 25 trials.

At the commencement of the experiment, each participant was

provided with an instruction sheet outlining the procedure. The

trials involved the subject pressing either the ”left” or ”right”

buttons on the keyboard to select one of the sound options.

Initially, both sounds were played, after which the participant

was required to select the desired sound.

It was explained to the participants that their choices would

result in a deduction of a specific amount of money from the

initial sum.

The remaining amount after each trial was recorded, and

at the conclusion of the experiment, 10 randomly selected

amounts were presented to the participants as rewards. If the

participants did not make a choice within five seconds, they

lost all the money they had started the trial with. Additionally,

the instructions indicated that the order of the sounds in each

trial could change.

Fig. 1. The layout of the monetary lottery involves the participant hearing
two consecutive sounds. Subsequently, they choose between the two options
displayed on the screen using the ”right” or ”left” keys, representing the first or
second sound. The screen then displays the amount of money lost associated
with the selected sound.

The participant’s financial loss was determined by the button

selected. If the button indicated a larger amount, the loss was

equal to a randomly selected amount from a distribution with

a mean value of 5 rubles. Conversely, if the button indicated

a smaller amount, the loss was equal to a randomly selected

amount from a distribution with a mean value of 50 rubles.

The loss distributions were generated using a Python script,

which created arrays of monetary losses within specified

ranges for each sound.

Fig. 2. The scheme of oddball-task.

III. RESULTS

A custom Python script using the MNE library was em-

ployed to analyze the acquired EEG data. The data were

cleaned of artifacts both manually and algorithmically using

the ICA algorithm. The data were then segmented based on

the stimuli.

For a detailed analysis, the average magnitude of the com-

ponents on the Cz electrode was used, as this channel showed

the most prominent amplitude expression. The mean amplitude

values within the relevant evoked potential window (-200-800

ms) were analyzed.

A repeated measures analysis of variance (ANOVA) was

conducted to assess differences in component amplitude. The

factors included in the analysis were Stimulus/Control, Large

Loss/Small Loss, and Before Game/After Game.

The analyses revealed significant differences in responses

to standard and deviant sounds before and after the game.

Additionally, significant differences were observed between

the responses to sounds encoding large losses and small losses.

TABLE I
RESULTS OF THE ANALYSIS OF VARIANCE. DIFFERENCES IN COMPONENTS

OF EVOKED POTENTIALS IN RESPONSE TO STANDARD SOUND AND

DEVIANT SOUND BEFORE PERFORMING THE ”TWO-HANDED BANDIT”
TASK.

Df Sum Sq Mean Sq F-value Pr(>F)
loss 2 1.78e-10 8.919e-11 31.76 3.1e-14

Residuals 1485 4.17e-09 2.810e-12

TABLE II
RESULTS OF THE ANALYSIS OF VARIANCE. DIFFERENCES IN COMPONENTS

OF EVOKED POTENTIALS IN RESPONSE TO STANDARD SOUND AND

DEVIANT SOUND AFTER PERFORMING THE ”TWO-HANDED BANDIT” TASK.

Df Sum Sq Mean Sq F-value Pr(>F)
loss 2 1.050e-10 8.919e-11 5.272e-11 13.13

Residuals 1485 5.962e-09 4.010e-12



Fig. 3. Differences in the components of evoked potentials in response to
standard sound and deviant sound prior to performing the two-armed bandit
task in the Cz lead.

Fig. 4. Differences in components of evoked potentials in response to standard
sound and deviant sound after performing the two-armed bandit task in the
Cz lead.

TABLE III
RESULTS OF THE ANALYSIS OF VARIANCE. DIFFERENCES IN COMPONENTS

OF EVOKED POTENTIALS IN RESPONSE TO STANDARD SOUND AND

DEVIANT SOUND FOR CONTROL AUDITORY STIMULI.

Df Sum Sq Mean Sq F-value Pr(>F)
loss 1 1.890e-10 1.889e-10 38.39 8.47e-10

Residuals 990 4.871e-09 4.920e-12

Fig. 5. Differences in components of evoked potentials in response to standard
sound and deviant sound for control auditory stimuli in the Cz lead.

TABLE IV
RESULTS OF THE ANALYSIS OF VARIANCE. DIFFERENCES IN COMPONENTS

OF EVOKED POTENTIALS IN RESPONSE TO STANDARD SOUND AND

DEVIANT SOUND FOR AUDITORY STIMULI ENCODING LARGE LOSSES.

Df Sum Sq Mean Sq F-value Pr(>F)
loss 1 4.530e-11 4.531e-11 22.27 2.71e-06

Residuals 990 2.015e-09 2.040e-12

Fig. 6. Differences in components of evoked potentials in response to standard
sound and deviant sound for auditory stimuli encoding high loss, in the Cz
lead.

TABLE V
RESULTS OF THE ANALYSIS OF VARIANCE. DIFFERENCES IN THE

COMPONENTS OF EVOKED POTENTIALS IN RESPONSE TO STANDARD

SOUND AND DEVIANT SOUND FOR AUDITORY STIMULI ENCODING LESS

LOSS.

Df Sum Sq Mean Sq F-value Pr(>F)
loss 1 4.700e-11 4.693e-11 14.32 0.000164

Residuals 990 3.246e-09 3.280e-12

Fig. 7. Differences in the components of evoked potentials in response to
standard sound and deviant sound for auditory stimuli encoding less loss, in
the Cz lead.



IV. DISCUSSION

The results demonstrated that the changes associated with

recognizing sounds encoding larger money losses were more

pronounced than those associated with recognizing sounds

encoding smaller money losses. In other words, during an

economic game with active choice, respondents were trained

to better recognise the sounds they were trying to avoid in

order to avoid financial losses.

The results of the study show that in situations of active

choice and repeated decision-making in the one-handed bandit

game, changes in the auditory cortex occur. Furthermore, the

magnitude of these changes correlates with the magnitude of

the monetary rewards encoded by the sounds.

The results of the study indicated that participants demon-

strated an ability to distinguish between sounds encoding mon-

etary losses during an economic game with active choice. The

evoked potentials in response to the sound encoding smaller

losses were more pronounced than to the sound encoding

larger losses. This finding is consistent with the results of

previous studies, which demonstrated that participants were

better at learning to discriminate between widely varying

losses [20]. This is partly explained by Kahneman’s theory

of reduced loss sensitivity [23].

In order to gain further insight, we intend to analyse the

data in greater detail in order to compare the change in evoked

potentials with behavioural manifestations of learning, namely

reaction speed and correctness of choice.

From a practical standpoint, the dynamic characteristics of

learning and their influence on plastic changes can signifi-

cantly assist in comprehending the learning process of the

auditory system. For instance, a certain degree of advancement

is essential for the design of tailored learning programmes

that facilitate high levels of learner engagement. Research has

demonstrated that the rapid acquisition of a new language is

accompanied by plastic changes in auditory cortical activity.

However, without an understanding of the individual differ-

ences in the dynamics of these changes, it is impossible to

determine the exact time to begin the process and the duration

of exercise required to effectively teach new words or sounds.

If the dynamics of reinforcement learning can be used as a

predictor of plastic changes, then the proposed model can

be used to predict the necessary exercise duration for each

individual. Furthermore, the successful outcomes of such a

study may encourage the development of neurotechnological

approaches to education, which becomes especially crucial

in the context of accelerating robotisation and the necessity

to change professions, requiring continuous learning for an

increasing number of people worldwide.

ACKNOWLEDGMENT

This work was supported by the Russian Science Founda-

tion, Grant No. 22-18-00660 (Neurocomputational mechanism

of sensory plasticity).

REFERENCES

[1] P. W. Glimcher and A. Rustichini, ‘Neuroeconomics: The Consilience
of Brain and Decision’, Science, vol. 306, no. 5695, pp. 447–452, Oct.
2004, doi: 10.1126/science.1102566.

[2] A. Rangel, C. Camerer, and P. R. Montague, ‘A framework for studying
the neurobiology of value-based decision making’, Nat Rev Neurosci,
vol. 9, no. 7, pp. 545–556, Jul. 2008, doi: 10.1038/nrn2357.

[3] J. K. Rilling, B. King-Casas, and A. G. Sanfey, ‘The neurobiology of
social decision-making’, Current Opinion in Neurobiology, vol. 18, no.
2, pp. 159–165, Apr. 2008, doi: 10.1016/j.conb.2008.06.003.

[4] Rescorla, R. A., Wagner, A. R. (1972). A theory of Pavlovian condition-
ing: Variations in the effectiveness of reinforcement and nonreinforce-
ment. In A. H., Black,W. F. Prokasy, (Eds.), Classical conditioning II.
New York: Appleton-Century-Crofts, 1972.

[5] C. B. Holroyd and M. G. H. Coles, ‘The neural basis of human error
processing: Reinforcement learning, dopamine, and the error-related
negativity.’, Psychological Review, vol. 109, no. 4, pp. 679–709, Oct.
2002, doi: 10.1037/0033-295X.109.4.679.

[6] W. Schultz, ‘Behavioral Theories and the Neurophysiology of Reward’,
Annu. Rev. Psychol., vol. 57, no. 1, pp. 87–115, Jan. 2006, doi:
10.1146/annurev.psych.56.091103.070229.

[7] E. S. Bromberg-Martin, M. Matsumoto, and O. Hikosaka, ‘Dopamine in
Motivational Control: Rewarding, Aversive, and Alerting’, Neuron, vol.
68, no. 5, pp. 815–834, Dec. 2010, doi: 10.1016/j.neuron.2010.11.022.

[8] J. R. Whitlock, A. J. Heynen, M. G. Shuler, and M. F. Bear, ‘Learning
Induces Long-Term Potentiation in the Hippocampus’, Science, vol. 313,
no. 5790, pp. 1093–1097, Aug. 2006, doi: 10.1126/science.1128134.

[9] T. J. Vickery, M. M. Chun, and D. Lee, ‘Ubiquity and Specificity of
Reinforcement Signals throughout the Human Brain’, Neuron, vol. 72,
no. 1, pp. 166–177, Oct. 2011, doi: 10.1016/j.neuron.2011.08.011.

[10] Y. I. Alexandrov, V. Klucharev, and M. Sams, ‘Effect of emo-
tional context in auditory-cortex processing’, International Journal
of Psychophysiology, vol. 65, no. 3, pp. 261–271, Sep. 2007, doi:
10.1016/j.ijpsycho.2007.05.004.

[11] Von Neumann, J., Morgenstern, O. (2007). Theory of games and
economic behavior (60th anniversary ed). Princeton University Press.

[12] J. B. Rotter, J. E. Chance, and E. J. Phares, Applications of a Social
Learning Theory of Personality. Holt, Rinehart and Winston, 1972.

[13] A. Bandura, ‘Self-efficacy: Toward a unifying theory of behavioral
change.’, Psychological Review, vol. 84, no. 2, pp. 191–215, 1977, doi:
10.1037/0033-295X.84.2.191.

[14] D. Kahneman and A. Tversky, ‘Choices, values, and frames.’, American
Psychologist, vol. 39, no. 4, pp. 341–350, Apr. 1984, doi: 10.1037/0003-
066X.39.4.341.

[15] T. A. Hare, C. F. Camerer, and A. Rangel, ‘Self-Control in Decision-
Making Involves Modulation of the vmPFC Valuation System’, Sci-
ence, vol. 324, no. 5927, pp. 646–648, May 2009, doi: 10.1126/sci-
ence.1168450.
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