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Abstract—The present study investigated the effects of an 
active learning task on rapid plasticity in auditory processing 
using an oddball paradigm combined with 
magnetoencephalography (MEG). Twenty-nine healthy 
participants completed two passive oddball tasks, with an active 
one-armed bandit learning task between them. We analyzed the 
mismatch negativity (MMN), P3a, and late positive potential 
(LPP) components of the event-related fields to assess learning-
induced changes in auditory processing. While the active learning 
task did not significantly enhance the amplitudes of these 
components, we found a significant correlation between learning 
performance and changes in the P3a component. Specifically, 
better learning of the associations between sounds and monetary 
outcomes was related to a decrease in P3a amplitude for the 
optimally learned sound. These findings suggest that the P3a 
component may serve as a neural marker of rapid, learning-
induced plasticity in auditory processing. Our study contributes to 
the understanding of the dynamic nature of auditory processing 
and its relationship to learning and decision-making, with 
potential applications in educational and clinical settings. 
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I. INTRODUCTION 
The human brain demonstrates a remarkable ability to adapt 

to environmental demands through experience-induced 
plasticity. Training can lead to the reorganization of cortical 
maps and the establishment of interconnections among specific 
cortical and subcortical areas [1,2]. This directed cortical 
plasticity [3] is essential for learning and memory formation. 

One of the most widely used tools to study training-induced 
plasticity in the auditory domain is the mismatch negativity 
(MMN) component of the event-related potential. MMN reflects 
the brain's automatic detection of changes in the environment 
[4,5] and is modulated by experience and training [6-12], 
making it a valuable tool for investigating the neural correlates 
of learning-induced plasticity. 

Recent studies have shown that the sensory cortex 
participates in learning during classical conditioning [13] and 
that reward-associated plasticity can occur across different 
sensory modalities. Gorin et al. [14] found an enhanced MMN 
response to incentive cues predicting large monetary losses, 

which correlated with the feedback-related negativity (FRN), a 
neural signature of reinforcement learning [15,16,17,18]. 

Building upon these findings, the present study aims to 
further investigate the neural correlates of training-induced 
plasticity in the context of economic decision-making. We 
employed a similar auditory paradigm, but with two key 
modifications. First, we used an active learning task (one-armed 
bandit) instead of the passive monetary incentive delay (MID) 
task to assess the effects of a more engaging learning experience 
on auditory cortical plasticity. Second, we focused on the rapid, 
within-day changes in auditory processing induced by the active 
learning task, rather than the overnight consolidation effects 
explored in the previous study. 

We hypothesized that the active learning task would induce 
rapid plastic changes in the cortex, reflected by enhanced MMN, 
P3a, and LPP responses to auditory cues associated with 
monetary losses. By comparing the neural responses before and 
after the learning task, we aimed to investigate the effects of 
active learning on auditory processing and its potential 
relationship with economic decision-making. Furthermore, we 
anticipated that these plastic changes would occur rapidly, 
within a single experimental session, without the need for an 
overnight consolidation period. 

II. METHODS 

A. Participants 
Twenty-nine healthy, right-handed participants (16 females, 

aged between 18 and 56 y.o., mean age = 23.7, sd = 6.6) with 
normal or corrected-to-normal vision participated in the study. 
All participants signed an informed consent form before the 
experiment. 

B. Stimuli 
The stimuli were eight pure monotone sounds with 

fundamental frequencies of 272, 325, 381, 440, 502, 568, 637, 
and 711 Hz, generated using PRAAT software. Each sound was 
200 ms long and had an intensity of 70 dB. 
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C. Experimental Design 
 The experiment consisted of two identical sessions of a 
roving oddball paradigm, with a punishment-based learning task 
between the sessions. 

During the roving oddball task, participants were exposed to 
auditory stimuli through headphones at a fixed intensity of 70 
dB while viewing a neutral video. The stimuli were presented in 
a roving oddball sequence, where each sound was repeated 4-6 
times consecutively before transitioning to the next sound. The 
order of the sounds was randomized, with the constraint that 
consecutive sounds were separated by 1 to 3 frequency steps (an 
average of 120 mel or two steps). The first presentations of a 
specific frequency within each series were considered deviants, 
while the final repetitions were considered standards. The task 
involved 1400 stimulus presentations lasting approximately 24 
minutes, with each stimulus type (deviant/standard) being 
presented around 35 times for each frequency. 

The learning task was a dynamic one-armed bandit monetary 
punishment-based learning task with changing choice options. 
Each participant was randomly assigned to four pairs of sounds 
(sound contrasts) constructed from the sounds used in the roving 
oddball task. In each contrast, each sound was randomly 
assigned to either a small (SL) or big loss (BL) condition. The 
small loss condition was characterized by monetary losses 
randomly selected from a normal distribution with a mean of 5 
and a standard deviation of 20, while the big loss condition was 
characterized by losses from a distribution with a mean of 50 
and a standard deviation of 20. Each trial started with an 
endowment of 60 coins. Participants were sequentially 
presented with two sound contrasts, with a "sound icon" 
accompanying the presentation of each sound on the left (first 
sound) and right (second sound) side of the screen. They were 
then prompted to choose either the sound presented first (left 
icon) or second (right icon), after which the monetary outcome 
was revealed. The outcome for each trial was calculated by 
subtracting a condition-specific randomly selected loss from the 
initial endowment of 60 coins, followed by the start of a new 
trial. The outcome was the initial 60 coins minus a value 
randomly selected from the condition's distribution, and then a 
new trial began. There were no probabilistic relationships 
between the sounds and monetary outcome conditions. Before 
the experiment, participants were instructed to learn which 
sounds led to small and big losses and to make choices that 
maximized their average monetary outcome. They were told that 
they would be paid depending on the average monetary outcome, 
providing additional motivation. The task included 200 trials (50 
per sound contrast, or block) and lasted approximately 30 
minutes. 

After participants established the association between 
sounds and monetary outcomes during the learning task, they 
were exposed to the same auditory stimuli a second time 
(session two of the roving oddball paradigm), which allowed to 
assess condition-specific (small vs. big loss) fast training-
induced changes in the brain. 

D. MEG Recording and Processing: Passive Oddball Tasks 
MEG signals of brain-induced responses were recorded 

using a 306-channel MEG setup (Neuromag, Helsinki, Finland), 
with head movements tracked by a head position indicator with 

four coils throughout the entire experiment, along with 
horizontal and vertical electrooculogram (EOG) and 
electrocardiogram (ECG) to detect physiological artifacts. 

Further processing of the MEG data was performed using 
MNE-Python [19] and custom Python scripts. To minimize the 
influence of external magnetic field noise and technical artifacts, 
the raw MEG data were pre-processed using the tSSS algorithm 
[20] and simultaneous correction for head movement. 

Gradiometer data were taken for subsequent analysis, 
resampled (250 Hz), band-pass filtered (0.5–45 Hz), and eye and 
heart artifacts were removed using independent component 
analysis (FastICA). 

Preprocessed and artifact-cleaned data were epoched into 
segments of -100 to 900 ms relative to the stimulus onset. MMN 
subtraction (first presentation of a stimulus in a series minus 
final repetition) was performed for each oddball series and 
averaged across stimulus conditions, resulting in a total number 
of approximately 35 MMN responses per sound frequency 
condition.  

To select specific clusters of channels and time windows for 
subsequent analysis, root mean square (RMS) values were 
calculated for planar gradiometer data. Visual assessment 
revealed three time windows of interest: MMN (100-200 ms), 
P3a (200-300 ms), and LPP (Late Positive Potential) (400-650 
ms). Subsequently, topographic responses of the gradiometers 
were plotted for the time points corresponding to the peak values 
within the identified time windows, and specific cluster of 
channels was chosen (Figure 1A). RMS values of the 
gradiometers within the selected clusters and time windows for 
each oddball session are shown in Figure 1B. 

Finally, the difference between the second and first oddball 
sessions was calculated for the mean values in each time 
window for each condition and subject (ΔMean RMS values), 
serving as a measure of training-induced plasticity. 

E. Behavioural Responses: Reinforcement Learning Task 
Our general measure of learning was the rate of 'correct' 

responses (RCR). Responses were treated as 'correct' if a 
participant chose the sound that led to the small loss condition, 
thus, postulating the best (correct) option among two possible 
ones. RCR was calculated for each block and each subject. 

F. Statistical analysis 
To track changes associated with the specific sound 

conditions (small and big loss) in the MMN, P3a and LPP 
components, we first ensured that mean RMS responses differed 
between the two oddball sessions. For this, we ran a repeated-
measures ANOVA with the mean RMS values as the 
independent variable, and oddball (2 levels: oddball 1, oddball 
2) and condition (2 levels: small loss, big loss) as the dependent 
variables. 

After this, to assess how strongly the training-induced 
changes in each of the event-related fields (ERF) components 
(MMN, P3a, LPP) are explained by each of the loss conditions, 
we correlated (spearman correlation) these changes (ΔMean 
RMS values) for sounds associated with the small loss and big 
loss conditions, respectively, with the RCR.  



 
Fig 1. Topographic and temporal characteristics of responses to oddball stimuli 
under different loss conditions. (A) Topography of the peak MMN (left), P3a 
(middle) and LPP (right) responses. Global average of the calculated mismatch 
negativity (MMN) responses, planar gradiometers. The blue line corresponds to 
the manually selected cluster of sensors that will be used for further analysis. (B) 
RMS values of the selected gradiometer sensors calculated for the mismatch 
negativity responses for the first (upper) and second (lower) oddball sessions. 
The blue line corresponds to the small loss condition, while the orange one 
corresponds to the big loss condition. The shaded areas on the graph correspond 
to the time windows selected for further analysis: orange for the MMN (100-
200ms) time window, green for the P3a (200-300ms), and blue for the LPP (400-
650ms).   

III. RESULTS 
Repeated-measures ANOVA showed oddball to be a 

significant predictor for ΔMean RMS values in all of the ERF 
components (F(1, 344) = 5.80, p = 0.016; F(1, 344) = 7.23, p = 
0.007; F(1, 344) = 9.07, p = 0.002, respectively for MMN, P3a, 
and LPP), while neither condition nor the oddball:condition 
interaction were significant. These statistical results imply that 
plasticity effects are observed in all time windows in general, 
without showing specificity for the loss condition, which 
contradicts our hypothesis postulating this specificity. 

Nonetheless, differences in brain responses between 
oddballs could be explained by or correlated with learning 
outcomes, possibly showing specificity for the loss condition. 
To investigate this, we used Spearman correlation to assess 
relationships between ΔMean RMS values for sounds associated 
with the small loss and big loss conditions and the rate of 
‘correct’ responses in the learning task. Results are 
demonstrated in Figure 2. 

Overall, while active learning does not seem to enhance 
brain responses in any of the sensory (MMN), attentional (P3a), 
or cognitive (LPP) domains, it can indeed explain some of the 
variance in the overall changes in the P3a component before and 
after learning. Specifically, the better participants learn the 
association between the sound and monetary outcome, choosing 

the most optimal option for maximizing rewards, the lower their 
P3a amplitude is to the optimally learned sound. 

 
Fig. 2. Correlation analysis of the changes in brain response (ΔMean RMS values, 
y-axes) and learning performance (RCR, x-axes) for sounds associated with 
small or big loss in three event-related fields components. Spearman correlation, 
all p-values are Bonferroni adjusted. (A) Changes in MMN between oddball 
sessions for small and big loss conditioned sounds do not correlate with 
performance in the learning task (p = 0.28, ρ = -0.21, and p = 0.51, ρ = -0.18 for 
small and big loss conditions, respectively). (B) Changes in P3a between oddball 
sessions significantly correlate (p = 0.03, ρ = -0.3) with performance in the 
learning task for the small loss condition, but do not correlate (p = 1, ρ = -0.1) 
for the big loss condition. (C) Changes in LPP between oddball sessions for 
small and big loss conditioned sounds do not correlate with performance in the 
learning task (p = 0.69, ρ = -0.17, and p = 1, ρ = -0.12 for small and big loss 
conditions, respectively). 

IV. DISCUSSION 
The present study investigated the effects of an active 

learning task on rapid plasticity in the auditory processing using 
an oddball paradigm. We found that the active learning task did 
not significantly enhance the amplitudes of the MMN, P3a, or 
LPP components. However, the learning performance correlated 
with the changes in the P3a component, suggesting that the P3a 
may serve as a neural marker of learning-induced plasticity in 
auditory processing. 

The P3a component is thought to reflect attentional orienting 
towards novel or salient stimuli and is considered to have a 
frontal origin [21]. In our study, better learning of the association 
between sounds and monetary outcomes was related to a 
decrease in P3a amplitude for the optimally learned sound. This 
finding is consistent with previous studies showing that the P3a 
amplitude is modulated by stimulus familiarity and learning 
[22,23]. The reduction in P3a amplitude for the optimally 



learned sound may indicate a decrease in the novelty or salience 
of this stimulus as a result of learning. 

Contrary to our hypothesis, we did not observe significant 
learning-related changes in the MMN component. The MMN is 
an index of automatic auditory change detection [4,5] and has 
been shown to be sensitive to training-induced plasticity [6-12]. 
The absence of significant MMN changes in our study may be 
due to the rapid nature of the learning task, which might not have 
been sufficient to induce detectable changes in early sensory 
processing. Additionally, the lack of an overnight consolidation 
period, which has been shown to enhance MMN changes 
following learning [24], may have contributed to the absence of 
significant MMN effects. 

The LPP component, which reflects higher-order cognitive 
processing and is sensitive to the emotional significance of 
stimuli, also did not show significant learning-related changes in 
our study. This suggests that the active learning task may not 
have significantly modulated the emotional or motivational 
salience of the auditory cues, at least not in a way that was 
detectable by the LPP. 

It is important to note that our study focused on rapid, within-
day plasticity induced by an active learning task, whereas 
previous studies have often investigated longer-term plasticity 
effects over multiple days or weeks [7,8,12]. The different time 
scales of plasticity investigated may account for some of the 
discrepancies between our findings and those of previous studies. 

In conclusion, our study demonstrates that an active learning 
task can induce rapid plasticity in auditory processing, as 
reflected by the correlation between learning performance and 
changes in the P3a component. These findings contribute to our 
understanding of the dynamic nature of auditory processing and 
its relationship to learning and decision-making. Future studies 
should investigate the long-term effects of active learning on 
auditory plasticity and explore the potential applications of these 
findings in educational and clinical settings. 
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