Homology Spheres, Acyclic Groups and Kan-Thurston Theorem

Mikhail Kornev Mikhail Kornev

Steklov Institute of Mathematics

From Analysis to Homotopy Theory

May 14, 2024

Basic Notions Basic Notions

 \overline{a} Δ bomole **1** A *homology sphere* is a smooth closed *n*-manifold $Σⁿ$ that

$$
H_*(\Sigma^n) \cong H_*(\mathbb{S}^n).
$$

- **2** A discrete group *G* is called *perfect* if $H_1(G) = 0$.
- ³ A discrete group *^G* is called *superperfect* if $H_1(G) = H_2(G) = 0.$

E.g., $\forall n \ge 3$ the group $SL(n, \mathbb{F}_q)$ is superperfect except for SL(3*,* ^F2)*,* SL(4*,* ^F2)*,* SL(3*,* ^F4)*.*

Kervaire and Novikov's Result Kervaire and Novikov's Result

n τε με τα προστικτικό (στα που ε)
Let Σ^{*n*} be a homology *n*-sphere (*n* ≥ 3) with fundamental group Let Σ *^G*. Then *^G* is superperfect.

Theorem (M. Kervaire '69, S. Novikov'62 (unpubl.) If *G* is a finitely presented superperfect group then for any
 $n > 5$ there exists a bomology *n* sphere Σ^n with $\pi_r(\Sigma^n) = G$ *n* \geq 5 *there exists* a homology *n*-sphere \sum^n with $\pi_1(\sum^n) = G$.

Poincaré Sphere

Recall, it is \cdots is in \ddots

$$
\mathbb{S}^3/2I,
$$

where where

$$
2I \cong \langle a, b \mid a^2 = b^3 = (ab)^5 \rangle \cong SL(2, \mathbb{Z}/5)
$$

is called the *binary icosohedral group* acting by some quaternionic representation on $\mathbb{S}^3 \subset \mathbb{H}$ by the left multiplication.

 $T_{the} P_{sin}$ exhaust is the The Poincaré sphere is *the only homology* ³*-sphere* with a finite nontrivial fundamental group up to homeomorphism.

The Poincaré sphere is the Brieskorn sphere Σ(2*,* ³*,* 5).

Deficiency of a Group

Definition

The *deficiency* def(*G*) of a finitely presented group *^G*:

$$
\max\{f - r \mid f = |F|, r = |R|, G \cong \langle F \mid R \rangle\}
$$

over all representations of *^G* with finite *^f* and *^r*.

E.g., $\text{def}(2I) = 0$, since we have

Proposition (folklore)
If a superperfect group has a balanced representation with $|F| = |R|$, then its deficiency vanishes.

Deficiency of a Group

The Proposition above follows from

Epstein's Lemma
Epstein finitellitense For any finitely presented group $G = \langle F | R \rangle$ we have

$$
|F|-|R|\leqslant \mathsf{rank}\, H_1(G)-s(H_2(G)),
$$

where $s(H_2(G))$ denotes the minimal number of generators of the group $H_2(G)$.

Thus, we get

Proposition (folklore) The fundamental groups of any homology 3-sphere has zero deficiency.

Brieskorn Spheres Σ*^a*

Expressed For positive integers *^a*1*, ^a*² and *^a*³ ^a *3-dimensional Brieskorn manifold*

$$
M(a_1, a_2, a_3) := \{ z \in \mathbb{C}^3 \mid z_1^{a_1} + z_2^{a_2} + z_3^{a_3} = 0 \} \cap \{ z \in \mathbb{C}^3 \mid |z| = 1 \}.
$$

There is an equivalent characterization as some Seifert manifold (W. Neumann, F. Raymond'77).

M^{*a*} is a homology sphere $\Leftrightarrow a_1, a_2$ and a_3 are pairwise coprime (Brieskorn'66).

A triple $a = (a_1, a_2, a_3)$ is a complete topological invariant for Brieskorn spheres Σ*^a* (W. Neumann'70).

Fundamental Group of Σ*^a*

$$
\pi_1(\Sigma_a) \cong \Gamma'(a_1, a_2, a_3)
$$

$$
1 \to C \to \Gamma(p, q, r) \to D(p, q, r) \to 1 - \text{central}
$$

$$
D(p, q, r) = \langle x, y, z \mid x^p = y^q = z^r = xyz = 1 \rangle
$$

This is by J. Milnor'75.

From Seifert's characterization, one gets:

$$
\pi_1(\Sigma_a) = \langle x_1, x_2, x_3, h \mid \forall i : [h, x_i] = 1, x_1x_2x_3 = 1, x_i^{a_i}h = 1 \rangle
$$

From Milnor's results, one can derive

 $\Gamma(p, q, r)$ has zero deficiency for any $p, q, r \geq 1$.

Acyclic Groups
Definition

<u>a discrete d</u> A discrete group *^G* is called *acyclic* if

 $H_*(G, \mathbb{Z}) \cong H_*(\{e\}, \mathbb{Z}).$

 $\text{Hig}_4 = \{a_1, b_1, a_2, b_2 \mid b_1^{a_1} = b_1^2, a_1^{a_2} = a_1^2, a_2^{b_2} = a_2^2, b_2^{b_1} = b_2^2\}$

More generally, Higman defined

$$
\text{Hig}_n = \langle x_i, \ i \in \mathbb{Z}/n \mid x_i^{x_{i-1}} = x_i^2 \rangle,
$$
\nwhere $x_i^{x_{i-1}} := x_{i-1}^{-1} x_i x_{i-1}$.

 $\frac{p}{p}$ is aquelic for all $n > 4$ Hig_n is acyclic for all $n \geqslant 4$.

Universal Acyclic Groups

Definitions A finitely presented group *^G* is called *universal* if it contains all recursively enumerable finitely generated groups.

The combination of Higman and Chiodo–Hill's results gives

Proposition (K.)
Every finitely presented group can be embedded into a Every finitely presented group can be embedded into a universal acyclic group with 12 generators and 38 relations.

$\pi_1(\Sigma_3)$ Is Not Acyclic

Proposition (A. Berrick, J. Hillman's 3) The fundamental group (nontrivial) of any 3-manifold cannot be <u>acyclic.</u>

The groups Hig_n ($n \geqslant 4$) cannot serve as fundamental groups of
bomology 3 spheres The groups Hig*ⁿ* homology 3-spheres.

Σ Σ^3 and Smooth Structures

Theorem (F. Gonzalez-Acuña'70)

If $n \neq 3$ then

$$
\Theta^n \stackrel{\sim}{=} \Theta^n_{\mathbb{Z}}
$$

where ^Θ*ⁿ* is the cobordism group of *homotopy ⁿ*-spheres, Θ*n* Z is the one of *homology ⁿ*-spheres.

In particular, the groups $\Theta_{\mathbb{Z}}^n$ are finite for all $n \neq 3$.

Theorem (K. Hendricks et al.'21)
Let Θ_{SE}^3 be the subgroup of Θ_{Z}^3 generated by the homology Let Θ_{SF}^* be the subgroup of $\Theta^*_\mathbb{Z}$ generated by the homology
Soifart spheres. Then the quotient group Θ^3/Θ^3 , has \mathbb{Z}^∞ a Seifert spheres. Then the quotient group $\Theta_{\mathbb{Z}}^3/\Theta_{SF}^3$ has \mathbb{Z}^{∞} as a subgroup.

Kervaire and Novikov's Result for *Novikov's* Result for *Novikov*'s Result Kervaire and Novikov's Result for $Σ⁴$

Theorem (M. Kervaire'69, S. Novikov'62 (unpubl.))
Every balanced superperfect finitely presented group can be

the fundamental group of a homology 4-sphere. the fundamental group of a homology 4-sphere.

4-spheres. E.g., 2l, Hig_n ($n \ge 4$) serve as fundamental groups of homology 4-spheres.

Extending The fundamental group of any \equiv
group of some Σ^4 . 3 can serve as the fundamental $\frac{g}{g}$ outpons some \pm .

Another way to get the corollary: the Suciu *1-spin σ*₁ (Σ 3 .

Deficiency of $\pi_1(\Sigma^4)$

Question Is every acyclic group the fundamental group of some homology 4-sphere?

It seems that the universal acyclic finitely presented group would see a counterexample.

There is a hemalegy 4 enhance There is a homology 4-sphere with the fundamental group of deficiency *[−]*1.

 T_{max} $\Delta t > 0$ there exists a h For any $N > 0$, there exists a homology 4-sphere whose
fundamental group of deficionsy smaller than N fundamental group of deficiency smaller than *−N*.

Finite $\pi_1(\Sigma^4)$ $\overline{}$

fundamental group. ⁴ has finite nontrivial fundamental group.

According to Donaldson's theory Σ^4 is homeomorphic to is homeomorphic to

$$
\left(\mathbb{C}P^2\right)^{\#m},\ \left(\overline{\mathbb{C}P^2}\right)^{\#n},\text{ or }\left(\pm\mathfrak{M}_{E_8}\right)^{\#p}\#\left(\mathbb{S}^2\times\mathbb{S}^2\right)^{\#q},
$$

where $#$ — the connected sum of manifolds, \mathcal{M}_{F_8} — Milnor's *^E*8-manifold.

For the signatures we have $\sigma(\Sigma^4) = |\pi_1(\Sigma)| \cdot \sigma(\Sigma^4) = 0$. Hence,

 $P = \nabla^4$ is the \mathbb{R}^2 . For Σ⁴ with finite nontrivial $\pi_1(\Sigma^4)$, we have

$$
\widetilde{\Sigma^4} \cong \left(\mathbb{S}^2 \times \mathbb{S}^2\right)^{|\pi_1(\Sigma^4)|-1}
$$

.

Finite $\pi_1(\Sigma^4)$ $\overline{}$

Current Current ls 2/ the only nontrivial fundamental group of Σ⁴? If not, how
much? \equiv

 T_{tot} and T_{tot} as finite group and integer R Let *^π* and *^χ* be a finite group and integer, respectively. Then, there is only a *finite number* of closed orientable 4-manifolds with the fundamental group *^π* and the Euler characteristic *^χ* up to homeomorphism.

L_{ot} – ke s Let *^π* be a finite group. Then, there are *only finitely many* homology 4-spheres with the fundamental group *^π* up to homeomorphism.

Homology Spheres With Fixed *^π*¹

doesn't hold for $|\pi| = \infty$.

For *^Mⁿ* and *^p >* 0 we get the *p-spin of M*:

$$
\sigma_p \mathcal{M}^n := \partial \left(\mathcal{M}_0 \times \mathbb{D}^{p+1} \right) = \mathcal{M}_0 \times \mathbb{S}^p \bigsqcup_{\mathbb{S}^{n-1} \times \mathbb{S}^p} \mathbb{S}^{n-1} \times \mathbb{D}^{p+1},
$$

where $M_0 = M \setminus \text{Int } \mathbb{D}^n$

For $n \geqslant 3$ and $N \geqslant 2$ there are *N* homology *n*-spheres with
isomorphic π 's and π 's as \mathbb{Z} π , modules, but with different isomorphic π_1 's and π_2 's as \mathbb{Z} π_1 -modules, but with different *^k*-invariants.

Theorem (J.-C. Hausmann, Sh. Weinberger'85)
There are nontrivial superperfect finitely presented groups,

both with and without torsion, which cannot serve as both with and without torsing, which cannot serve as fundamental groups of homology 4-spheres.

The case of a non-torsion group uses the *Kan–Thurston construction*.

Kan-Thurston Construction Kan-Thurston Construction

$T_{\rm max}$ (D. Kan, W. Thursday, ϵ)

For every path connected $X \in sSet_*$, there exists

 $t: K(G_X, 1) \simeq TX \rightarrow X$

such that

$$
H_*(TX; t^*\mathcal{A}) \cong H_*(X; \mathcal{A}), \ H^*(TX; t^*\mathcal{A}) \cong H^*(X; \mathcal{A})
$$

for every local coefficient system A *on X .*

It is based on the *ad hoc* constructions of acyclic group cones.

Categorical Meaning

Corollary (A. Deleanu'82)

$$
\pi_0 C W \cong \mathcal{G} \mathcal{P}[\Gamma^{-1}].
$$

Objects of $\mathbb{G}\mathscr{P}$ are pairs (G, P) , $P \triangleleft G$, $H_1(P) = 0$. *Morphisms* of $\mathbb{G}\mathscr{P}$ are homomorphisms of pairs $f:(G, P) \rightarrow (G', P')$ for which $f(P) \subset P'$.

The set of morphisms ^Γ consists of those morphisms $f:(G, P) \rightarrow (G', P')$ such that $f: G/P \cong G'/P'$
 $f \cdot H(G; A) \cong H(G', A)$ for any G'/P' -module f_* : $H_*(G; A) \cong H_*(G'; A)$ for any G'/P' -module A.

Functors of the Quillen plus and Kan-Thurston construction are *inverse* in some sense.

[∞]-topos Meaning?

 $\frac{1}{x}$ is to the unit $\frac{1}{x}$ ^X *— ∞-topos where ^π*¹ *preserves products. Then, there is an adjunction*

 \mathfrak{X}^{\Diamond} — an ∞-category of pairs (*X*, *P*), *X* ∈ \mathfrak{X} and *P* is a perfect
pormal subgroup of $\pi(X)$ *normal subgroup of* $\pi_1(X)$ *.*

Moreover, the map $pr_1 \circ \eta : X \to (X, P)^+$ *is acyclic,* η — the unit.

Question Is there an *[∞]*-topos meaning of the Kan-Thurston construction?

Recognition of Spheres

Is there an algorithm for recognition of the standard sphere \mathbb{S}^n ?

T_{res} theorem (H. Rubinstein, A. Thompson'94)

Yes, there is for $n = 3$.

 $T_{\text{he} \text{prepart}}$ of α n dimensional The property of an *ⁿ*-dimensional manifold to be a standard *n*-dimensional sphere ($n \geqslant 5$) or the property of a contractible region in an $(n + 1)$ -dimensional Euclidean space with a smooth boundary to be the ordinary (*ⁿ* ⁺ 1)-disk, *unrecognizable*.

 $\frac{Q}{2}$ uestion What about homology 4-spheres?

Thank you*!*