Loop homology of moment-angle complexes in the flag case

(based on arXiv:2403.18450 and work in progress)

Fedor Vylegzhanin

Moscow State University / Higher School of Economics, Russia

Advances in Homotopy Theory VI June 18, 2024 @ BIMSA

Outline

X a simply connected space, \mathbb{k} a commutative ring with unit \rightsquigarrow $H_{*}(\Omega X ; \mathbb{k})$ - a connected associative \mathbb{k}-algebra with unit (even a Hopf algebra if $H_{*}(\Omega X ; \mathbb{k})$ is free over \mathbb{k}).

Goal: give a presentation of $H_{*}(\Omega X ; \mathbb{k})$ by generators and relations.
We consider $X=\mathcal{Z}_{\mathcal{K}}$ and $X=E H \times_{H} \mathcal{Z}_{\mathcal{K}}$, where \mathcal{K} is a flag simplicial complex, $\mathcal{Z}_{\mathcal{K}}$ is the moment-angle complex and $H \subset \mathbb{T}^{m}$ is a subtorus.

More generally, our approach applies for fibrations $X \rightarrow E \xrightarrow{p} B$ where Ωp has a homotopy section and algebras $H_{*}(\Omega E ; \mathbb{k}), H_{*}(\Omega B ; \mathbb{k})$ are known.

Moment-angle complexes and their partial quotients

Fix an abstract simplicial complex \mathcal{K} on vertex set $[m]=\{1, \ldots, m\}$. The moment-angle complex is the following CW-complex:

$$
\mathcal{Z}_{\mathcal{K}}:=\bigcup_{J \in \mathcal{K}}\left(\prod_{i \in J} D^{2} \times \prod_{i \in[m] \backslash J} S^{1}\right) \subset\left(D^{2}\right)^{m}
$$

Clearly, $\mathbb{T}^{m}=\left(S^{1}\right)^{m}$ acts on $\mathcal{Z}_{\mathcal{K}}$. If a closed subgroup $H \subset \mathbb{T}^{m}$ acts freely on $\mathcal{Z}_{\mathcal{K}}$, the \mathbb{T}^{m} / H-space $\mathcal{Z}_{\mathcal{K}} / H$ is called a partial quotient of $\mathcal{Z}_{\mathcal{K}}$. Up to an equivariant homeomorphism, this class contains all compact smooth toric varieties and quasitoric manifolds (Davis, Januszkiewicz).

We obtain $H \subset \mathbb{T}^{m}$ as $T_{\lambda}:=\operatorname{Ker}\left(\lambda_{*}: \mathbb{T}^{m} \rightarrow \mathbb{T}^{n}\right)$ for some $\lambda: \mathbb{Z}^{m} \rightarrow \mathbb{Z}^{n}$.

Moment-angle complexes and their homotopy quotients

Fix an abstract simplicial complex \mathcal{K} on vertex set $[m]=\{1, \ldots, m\}$. The moment-angle complex is the following CW-complex:

$$
\mathcal{Z}_{\mathcal{K}}:=\bigcup_{J \in \mathcal{K}}\left(\prod_{i \in J} D^{2} \times \prod_{i \in[m] \backslash J} S^{1}\right) \subset\left(D^{2}\right)^{m}
$$

Clearly, $\mathbb{T}^{m}=\left(S^{1}\right)^{m}$ acts on $\mathcal{Z}_{\mathcal{K}}$. For any closed subgroup $H \subset \mathbb{T}^{m}$ we call the \mathbb{T}^{m} / H-space $E H \times_{H} \mathcal{Z}_{\mathcal{K}}$ a homotopy quotient of $\mathcal{Z}_{\mathcal{K}}$.
Up to an equivariant homotopy equivalence, this class contains all smooth toric varieties and quasitoric manifolds (Davis, Januszkiewicz / Franz).

We obtain $H \subset \mathbb{T}^{m}$ as $T_{\lambda}:=\operatorname{Ker}\left(\lambda_{*}: \mathbb{T}^{m} \rightarrow \mathbb{T}^{n}\right)$ for arbitrary $\lambda: \mathbb{Z}^{m} \rightarrow \mathbb{Z}^{n}$ of full rank, and denote $X(\mathcal{K}, \lambda):=E T_{\lambda} \times_{T_{\lambda}} \mathcal{Z}_{\mathcal{K}}$.

Some homotopy fibrations

Consider the Davis-Januszkiewicz space:

$$
\operatorname{DJ}(\mathcal{K}):=\bigcup_{J \in \mathcal{K}}\left(\prod_{i \in J} \mathbb{C} P^{\infty} \times \prod_{i \in[m] \backslash J} \mathrm{pt}\right) \subset\left(\mathbb{C} \mathrm{P}^{\infty}\right)^{m} .
$$

Buchstaber, Panov: there are homotopy fibrations

$$
\mathcal{Z}_{\mathcal{K}} \rightarrow \operatorname{DJ}(\mathcal{K}) \xrightarrow{p}\left(\mathbb{C} P^{\infty}\right)^{m}, X(\mathcal{K}, \lambda) \rightarrow \operatorname{DJ}(\mathcal{K}) \xrightarrow{p^{\prime}}\left(\mathbb{C P}^{\infty}\right)^{n} .
$$

Panov, Ray: Ωp and Ωp^{\prime} admit homotopy sections. Hence

$$
\Omega \mathrm{DJ}(\mathcal{K}) \simeq \Omega \mathcal{Z}_{\mathcal{K}} \times \mathbb{T}^{m} \simeq \Omega X(\mathcal{K}, \lambda) \times \mathbb{T}^{n} ;
$$

in particular, $\pi_{j}(\mathrm{DJ}(\mathcal{K})) \simeq \pi_{j}\left(\mathcal{Z}_{\mathcal{K}}\right) \simeq \pi_{j}(X(\mathcal{K}, \lambda))$ for $j \geq 2$.

Loop homology algebras

The results below use the split fibration $\Omega \mathcal{Z}_{\mathcal{K}} \rightarrow \Omega \mathrm{DJ}(\mathcal{K}) \rightarrow \mathbb{T}^{m}$ and (hga-)formality of $\operatorname{DJ}(\mathcal{K})$. Here \mathbb{k} is arbitrary, $\mathbb{k}[\mathcal{K}]$ is the face ring of \mathcal{K}.

Theorem (Panov, Ray' 08 / V.)

(1) $H_{*}(\Omega \mathrm{DJ}(\mathcal{K}) ; \mathbb{k}) \cong \operatorname{Ext}_{\mathbb{k}[\mathcal{K}]}(\mathbb{k}, \mathbb{k})$ as graded \mathbb{k}-algebras;
(2) $H_{*}\left(\Omega \mathrm{DJ}(\mathcal{K} ; \mathbb{k}) \cong H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right) \otimes \Lambda\left[u_{1}, \ldots, u_{m}\right]\right.$ as left $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right)$-modules;
(3) $H_{*}(\Omega \mathrm{DJ}(\mathcal{K}) ; \mathbb{k}) \hookleftarrow T\left(u_{1}, \ldots, u_{m}\right) /\left(u_{i}^{2}=0, i=1, \ldots, m ;\left[u_{i}, u_{j}\right]=\right.$ $0,\{i, j\} \in \mathcal{K})$. This is the whole algebra if \mathcal{K} is a flag simplicial complex (if $I \in \mathcal{K}$ whenever $\{i, j\} \in \mathcal{K}$ for all $i, j \in I$).

Theorem (Franz'21/V.)

Suppose that $H_{*}(\Omega \mathrm{DJ}(\mathcal{K}) ; \mathbb{k})$ is a free \mathbb{k}-module (e.g. \mathcal{K} is flag). Then
(1) $H_{*}(\Omega \mathrm{DJ}(\mathcal{K}) ; \mathbb{k}) \cong \operatorname{Ext}_{\mathbb{k}[\mathcal{K}]}(\mathbb{k}, \mathbb{k})$ as Hopf \mathbb{k}-algebras;
(2) $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right) \rightarrow H_{*}(\Omega \operatorname{DJ}(\mathcal{K}) ; \mathbb{k}) \rightarrow \Lambda\left[u_{1}, \ldots, u_{m}\right]$ is an extension of Hopf algebras.

Stanton's homotopy decomposition

Theorem (Stanton'23)

Let \mathcal{L} be a flag simplicial complex, and $\mathcal{K}=\mathcal{L}$ or $\mathcal{K}=s k_{d} \mathcal{L}$. Then there is a homotopy equivalence

$$
\Omega \mathcal{Z}_{\mathcal{K}} \simeq\left(S^{3}\right)^{\times B} \times\left(S^{7}\right)^{\times C} \times \prod_{\substack{n \geq 3, n \neq 4,8}}\left(\Omega S^{n}\right)^{\times D_{n}}
$$

for some $B, C, D_{n} \geq 0$. In particular,

$$
\pi_{N}\left(\mathcal{Z}_{\mathcal{K}}\right) \simeq \pi_{N-1}\left(S^{3}\right)^{\oplus B} \oplus \pi_{N-1}\left(S^{7}\right)^{\oplus C} \oplus \bigoplus_{\substack{n \geq 3, n \neq 4,8}} \pi_{N}\left(S^{n}\right)^{\oplus D_{n}}
$$

Our appoach: find B, C, D_{n} by computing the Poincaré series of $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right)$, using $\operatorname{Ext}_{\mathbb{k}[\mathcal{K}]}(\mathbb{k}, \mathbb{k}) \cong H_{*}(\Omega \mathrm{DJ}(\mathcal{K}) ; \mathbb{k}) \simeq H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right) \otimes \Lambda[m]$.

Homotopy groups, the case $\mathcal{K}=\mathcal{K}^{f}$

Theorem (V.'24)

Let \mathcal{K} be a flag simplicial complex on vertex set $[m]$. Then there is a homotopy equivalence

$$
\Omega \mathcal{Z}_{\mathcal{K}} \simeq\left(S^{3}\right)^{\times B} \times\left(S^{7}\right)^{\times C} \times \prod_{\substack{n \geq 3, n \neq 4,8}}\left(\Omega S^{n}\right)^{\times D_{n}}
$$

where the numbers B, C, D_{n} satisfy

$$
\frac{\prod_{n}\left(1-t^{n-1}\right)^{D_{n}}}{\left(1+t^{3}\right)^{B}\left(1+t^{7}\right)^{C}}=(1+t)^{m-\operatorname{dim}(\mathcal{K})} h_{\mathcal{K}}(-t)=\sum_{J \subset[m]}\left(1-\chi\left(\mathcal{K}_{J}\right)\right) \cdot t^{|J|}
$$

This allows to describe homotopy groups of smooth toric varieties and quasitoric manifolds corresponding to flag complexes!

Homotopy groups, the case $\mathcal{K}=s k_{d} \mathcal{K}^{f}$ (work in progress)

Theorem (V., work in progress)
Let \mathcal{L} be a flag simplicial complex and $\mathcal{K}=s k_{d} \mathcal{L}$. Denote $M:=\{I \in \mathcal{L}:|I|=d+2\}$ and $N:=\{J \in \mathcal{L}:|J|=d+3\}$. Then

$$
\begin{gathered}
H_{*}(\Omega \operatorname{DJ}(\mathcal{K}) ; \mathbb{k}) \cong T\left(u_{1}, \ldots, u_{m} ; w_{l}, I \in M\right) / \mathcal{I}, \\
\mathcal{I}=\left(u_{i}^{2}=0, i=1, \ldots, m ;\left[u_{i}, u_{j}\right]=0,\{i, j\} \in \mathcal{K} ;\right. \\
\left(\left[u_{i}, w_{l}\right]=0, i \in I \in M ; \sum_{i \in J}\left[u_{i}, w_{\backslash \backslash i}\right]=0, J \in N\right) .
\end{gathered}
$$

Then the Poincaré series of $H_{*}(\Omega \mathrm{DJ}(\mathcal{K}) ; \mathbb{k})$ can be computed using Gröbner bases...

Presentations of connected algebras (\mathbb{k} is a field)

Let \mathbb{k} be a commutative ring with unit. Graded associative \mathbb{k}-algebra $A=\bigoplus_{n \geq 0} A_{n}$ with unit is connected if $A_{0}=\mathbb{k} \cdot 1$. A presentation of A is any isomorphism $A \simeq T\left(a_{1}, \ldots, a_{N}\right) /\left(r_{1}=\cdots=r_{M}=0\right)$, where a_{i}, r_{j} are homogeneous elements of positive degree.

Theorem (C.T.C.Wall'60)

Let \mathbb{k} be a field and A be an associative graded \mathbb{k}-algebra. Let $n \geq 0$.
(1) \forall presentation of A has $\geq \operatorname{dim}_{\mathbb{k}} \operatorname{Tor}_{1}^{A}(\mathbb{k}, \mathbb{k})_{n}$ generators and $\geq \operatorname{dim}_{\mathbb{k}} \operatorname{Tor}_{2}^{A}(\mathbb{k}, \mathbb{k})_{n}$ relations of degree n.
(2) \exists a presentation of A with $\operatorname{dim}_{\mathbb{k}} \operatorname{Tor}_{1}^{A}(\mathbb{k}, \mathbb{k})_{n}$ generators and $\operatorname{dim}_{\mathbb{k}} \operatorname{Tor}_{2}^{A}(\mathbb{k}, \mathbb{k})_{n}$ relations of degree n.

Presentations of connected algebras (\mathbb{k} is a PID)

Let \mathbb{k} be a commutative ring with unit. Graded associative \mathbb{k}-algebra $A=\bigoplus_{n \geq 0} A_{n}$ with unit is connected if $A_{0}=\mathbb{k} \cdot 1$. A presentation of A is any isomorphism $A \simeq T\left(a_{1}, \ldots, a_{N}\right) /\left(r_{1}=\cdots=r_{M}=0\right)$, where a_{i}, r_{j} are homogeneous elements of positive degree.

Theorem (V.)

Let \mathbb{k} be a PID and A be an associative graded \mathbb{k}-algebra. Let $n \geq 0$.
(1) \forall presentation of A has \geq gen $\operatorname{Tor}_{1}^{A}(\mathbb{k}, \mathbb{k})_{n}$ generators and $\geq\left(\right.$ gen $\left.\operatorname{Tor}_{2}^{A}(\mathbb{k}, \mathbb{k})_{n}+\operatorname{rel} \operatorname{Tor}_{1}^{A}(\mathbb{k}, \mathbb{k})_{n}\right)$ relations of degree n.
(2) \exists a presentation of A with gen $\operatorname{Tor}_{1}^{A}(\mathbb{k}, \mathbb{k})_{n}$ generators and $\left(\operatorname{gen} \operatorname{Tor}_{2}^{A}(\mathbb{k}, \mathbb{k})_{n}+\operatorname{rel} \operatorname{Tor}_{1}^{A}(\mathbb{k}, \mathbb{k})_{n}\right)$ relations of degree n.

Here $M \simeq \mathbb{k}^{\operatorname{gen} M} / \mathbb{k}^{\mathrm{rel}} M$, where gen M and rel M are the smallest possible. For example, $\operatorname{gen}(\mathbb{Z} / 6 \oplus \mathbb{Z})=2$, $\operatorname{rel}(\mathbb{Z} / 6 \oplus \mathbb{Z})=1$ if $\mathbb{k}=\mathbb{Z}$.

Presentations and the bar construction

The \mathbb{k}-module $\operatorname{Tor}^{A}(\mathbb{k}, \mathbb{k})$ is isomorphic to homology of the bar construction $(\overline{\mathrm{B}}(A), d)$, where $\overline{\mathrm{B}}(A)_{n}=\left(A_{>0}\right)^{\otimes n}$.

Theorem (V.)

Choose the elements

- $a_{1}, \ldots, a_{N} \in A_{>0} \simeq \overline{\mathrm{~B}}_{1}(A)$ whose images generate $\operatorname{Tor}_{1}^{A}(\mathbb{k}, \mathbb{k})$;
- $\rho_{r}=\sum_{\beta} K_{r, \beta} \otimes L_{r, \beta} \in A_{>0} \otimes A_{>0} \simeq \overline{\mathrm{~B}}_{2}(A)$ so that triviality of their images $d_{\overline{\mathrm{B}}}\left(\rho_{r}\right) \in \overline{\mathrm{B}}_{1}(A)$ give a sufficient set of additive relations between $\left[a_{1}\right], \ldots,\left[a_{N}\right] \in \operatorname{Tor}_{1}^{A}(\mathbb{k}, \mathbb{k})$;
- $\sum_{\alpha} P_{i, \alpha} \otimes Q_{i, \alpha} \in A_{>0} \otimes A_{>0} \simeq \overline{\mathrm{~B}}_{2}(A)$ whose images generate $\operatorname{Tor}_{2}^{A}(\mathbb{k}, \mathbb{k})$ as a \mathbb{k}-module.
Then we have a presentation

$$
A \simeq T\left(a_{1}, \ldots, a_{N}\right) /\left(\sum_{\alpha} \pm P_{i, \alpha} \cdot Q_{i, \alpha}=\sum_{\beta} \pm K_{r, \beta} \cdot L_{r, \beta}=0\right)
$$

Our approach to loop homology

Let \mathcal{K} be a flag complex. We have: $S=H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right)$ is a subalgebra in the known algebra $A=H_{*}(\Omega \mathrm{DJ}(\mathcal{K}) ; \mathbb{k})$, and $A \simeq S \otimes_{\mathbb{k}} \Lambda[m]$ as a S-module. A presentation of S is computed as follows.
(1) We have the Fröberg resolution $(A \otimes \mathbb{K}\langle\mathcal{K}\rangle, d)$ of the left A-module \mathbb{k}. Consider it as a free resolution $(S \otimes \wedge[m] \otimes \mathbb{k}\langle\mathcal{K}\rangle, \widehat{d})$ of the left S-module \mathbb{k}.
(2) Compute $\operatorname{Tor}^{S}(\mathbb{k}, \mathbb{k})$ as homology of $(\Lambda[m] \otimes \mathbb{k}\langle\mathcal{K}\rangle, \bar{d})$.
(3) Construct a homology isomorphism $\bar{\varphi}:(\Lambda[m] \otimes \mathbb{k}\langle\mathcal{K}\rangle, \bar{d}) \rightarrow(\overline{\mathrm{B}}(S), d)$.
(1) Obtain elements in $\overline{\mathrm{B}}(S)$ corresponding to additive generators and relations in $\operatorname{Tor}^{S}(\mathbb{k}, \mathbb{k})$.
(5) Use the previous slide to give a presentation of S.

Theorem (V.'22)

On step 2 we obtain $\operatorname{Tor}_{q}^{H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right)}(\mathbb{k}, \mathbb{k}) \cong \bigoplus_{J \subset[m]} \widetilde{H}_{q-1}\left(\mathcal{K}_{J} ; \mathbb{k}\right)$.

Results: generators for $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right)$, flag case

Recall that the algebra $H_{*}(\Omega \mathrm{DJ}(\mathcal{K}) ; \mathbb{k})$ is generated by elements u_{1}, \ldots, u_{m} of degree 1. For $I=\left\{i_{1}<\cdots<i_{k}\right\} \subset[m], x \in H_{*}(\Omega \operatorname{DJ}(\mathcal{K}) ; \mathbb{k})$ denote

$$
c(I, x):=\left[u_{i_{1}},\left[u_{i_{2}}, \ldots\left[u_{i_{k}}, x\right] \ldots\right]\right] \in H_{*}(\Omega \operatorname{DJ}(\mathcal{K}) ; \mathbb{k})
$$

One can show that $c\left(I, u_{j}\right) \in H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right) \subset H_{*}(\Omega \mathrm{DJ}(\mathcal{K}) ; \mathbb{k})$ if $I \neq \varnothing$.
For every $J \subset[m]$ let $\Theta(J) \subset J$ contain exactly one vertex from every path component of \mathcal{K}_{J} not containing $\max (J)$ (for example, the minimal vertices of path components). We have $|\Theta(J)|=b_{0}\left(\mathcal{K}_{J}\right)-1$.

Theorem (Grbić, Panov, Theriault, Wu'16 / V.)
$H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right)$ is multiplicatively generated by the GPTW generators $\left\{c\left(J \backslash j, u_{j}\right): J \subset[m], j \in \Theta(J)\right\}$. It is a minimal set of generators.

Results: relations in $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right)$, flag case

Each $c\left(I, u_{j}\right)$ can be expressed through the GPTW generators by an explicit recursive algorithm. Denote any such expression as $\widehat{c}\left(I, u_{j}\right)$.

Theorem (V.'24)

For every $J \subset[m]$ choose a set of simplicial 1-cycles $\sum_{\{i<j\} \in \mathcal{K},} \lambda_{i j}^{\alpha}[\{i, j\}]$ in $C_{1}\left(\mathcal{K}_{J} ; \mathbb{k}\right)$, whose images generate the \mathbb{k}-module $H_{1}\left(\mathcal{K}_{J} ; \mathbb{k}\right)$. Then $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right)$ is presented by GPTW generators modulo the relations

$$
\sum_{\{i<j\} \in \mathcal{K} J} \lambda_{i j}^{(\alpha)} \sum_{\substack{J \backslash\{i, j\}=A \sqcup B: \\ \max (A)>i \\ \max (B)>j}}(-1) \cdots\left[\widehat{c}\left(A, u_{i}\right), \widehat{c}\left(B, u_{j}\right)\right]=0 .
$$

In particular, there is a presentation by $\sum_{J \subset[m]}\left(b_{0}\left(\mathcal{K}_{J}\right)-1\right)$ generators and $\sum_{J \subset[m]}$ gen $H_{1}\left(\mathcal{K}_{J} ; \mathbb{k}\right)$ relations. It is minimal among $\mathbb{Z} \times \mathbb{Z}_{\geq 0}^{m}$-homogeneous presentations, if \mathbb{k} is a PID.

An example: 5-cycle

For \mathcal{K} a 5 -cycle, the algebra $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right)$ is presented by 10 generators and a single relation, first computed by Veryovkin (2016, computer bruteforce). The GPTW generators:

$$
\begin{gathered}
{\left[u_{3}, u_{1}\right],\left[u_{4}, u_{1}\right],\left[u_{4}, u_{2}\right],\left[u_{5}, u_{2}\right],\left[u_{5}, u_{3}\right],\left[u_{1},\left[u_{5}, u_{3}\right]\right],} \\
{\left[u_{2},\left[u_{4}, u_{1}\right]\right],\left[u_{3},\left[u_{4}, u_{1}\right]\right],\left[u_{3},\left[u_{5}, u_{2}\right]\right],\left[u_{4},\left[u_{5}, u_{2}\right]\right] .}
\end{gathered}
$$

Our formula gives the relation:

$$
\begin{gathered}
-\left[\left[u_{3}, u_{1}\right],\left[u_{4},\left[u_{5}, u_{2}\right]\right]\right]+\left[\left[u_{4}, u_{1}\right],\left[u_{3},\left[u_{5}, u_{2}\right]\right]\right]+\left[\left[u_{3},\left[u_{4}, u_{1}\right]\right],\left[u_{5}, u_{2}\right]\right] \\
+\left[\left[u_{4}, u_{2}\right],\left[u_{1},\left[u_{5}, u_{2}\right]\right]\right]+\left[\underline{\left.\left[u_{1},\left[u_{4}, u_{2}\right]\right],\left[u_{5}, u_{3}\right]\right]=0 .}\right.
\end{gathered}
$$

The underlined element is not a GPTW generator; however, $-\left[u_{1},\left[u_{4}, u_{2}\right]\right]=\left[u_{2},\left[u_{4}, u_{1}\right]\right]$ in $H_{*}(\Omega \operatorname{DJ}(\mathcal{K}) ; \mathbb{k})$, and $\left[u_{2},\left[u_{4}, u_{1}\right]\right]$ is a generator.

\mathbb{Q}-coformality in the flag case

Simply connected space X is \mathbb{k}-coformal if $C_{*}(\Omega X ; \mathbb{k}) \sim H_{*}(\Omega X ; \mathbb{k})$ as dga algebras over \mathbb{k}. It is known that $\operatorname{DJ}(\mathcal{K})$ is coformal if and only if \mathcal{K} is flag.

Proposition (V.'24)

If \mathcal{K} is flag, then $\mathcal{Z}_{\mathcal{K}}$ and all $X(\mathcal{K}, \lambda)$ are \mathbb{Q}-coformal.
This follows from the following theorem.
Theorem (Huang' 23)
Let $F \rightarrow E \rightarrow B$ be a fibration of nilpotent spaces of finite type, such that E is \mathbb{Q}-coformal and $\pi_{*}(F) \otimes \mathbb{Q} \rightarrow \pi_{*}(E) \otimes \mathbb{Q}$ is injective. Then F is \mathbb{Q}-coformal.
\mathbb{k}-coformality in the flag case?
X a simply connected space such that $H_{*}(\Omega X ; \mathbb{k})$ is \mathbb{k}-free \rightsquigarrow Milnor-Moore spectral sequence $E_{p, q}^{2}=\operatorname{Tor}_{p}^{H_{*}(\Omega X ; \mathbb{k})}(\mathbb{k}, \mathbb{k})_{q} \Rightarrow H_{p+q}(X ; \mathbb{k})$. We have $E^{2}=E^{\infty}$ if X is \mathbb{k}-coformal.

Theorem (V.'22)
If \mathcal{K} is flag, then $E^{2}=E^{\infty}$ for $\mathcal{Z}_{\mathcal{K}}$ for any \mathbb{k}.

Conjecture

If \mathcal{K} is flag, then $\mathcal{Z}_{\mathcal{K}}$ and all $X(\mathcal{K}, \lambda)$ are coformal over any \mathbb{k}.
It would follow from the following generalisation of Huang's result.

Conjecture

Let $F \rightarrow E \xrightarrow{p} B$ be a fibration of simply connected spaces of finite type, such that E is \mathbb{k}-coformal and Ωp has a homotopy section. Then F is k-coformal.

Homotopy quotients, flag case

Similar approach to loop homology of $X(\mathcal{K}, \lambda)=E T^{n} \times T^{n} \mathcal{Z}_{\mathcal{K}}$ gives

$$
\operatorname{Tor}^{H_{*}(\Omega X(\mathcal{K}, \lambda) ; \mathbb{k})}(\mathbb{k}, \mathbb{k}) \simeq H\left[\Lambda\left[t_{1}, \ldots, t_{n}\right] \otimes \mathbb{k}\langle\mathcal{K}\rangle, d\right] \simeq H_{*}(X(\mathcal{K}, \lambda) ; \mathbb{k}) .
$$

In general, we do not know the homology of this complex!
Theorem ($\mathrm{V}_{\text {., }}$ work in progress)
Suppose that \mathcal{K} is flag and $X(\mathcal{K}, \lambda)$ is a quasitoric manifold (or a partial quotient $\mathcal{Z}_{\mathcal{K}} / T^{n}$, where \mathcal{K} is a Cohen-Macaulay complex of dimension $n-1)$. Then $H_{*}(\Omega X(\mathcal{K}, \lambda) ; \mathbb{k})$ is presented by $h_{1}(\mathcal{K})=m-n$ generators of degree 1 (linear combinations of u_{1}, \ldots, u_{m}) modulo $h_{2}(\mathcal{K})$ relations of degree 2.

Results of Berglund on Koszul spaces imply that this algebra is quadratic dual to $H^{*}(X(\mathcal{K}, \lambda) ; \mathbb{k}) \cong \mathbb{k}[\mathcal{K}] /\left(t_{1}, \ldots, t_{n}\right)$ if $\mathbb{k}=\mathbb{Q}$, and both these algebras are Koszul. I do not know how to prove it algebraically.

Open questions

(1) Suppose that $H_{*}(\Omega \mathrm{DJ}(\mathcal{K}) ; \mathbb{k})$ has additive torsion (examples are known). Is the comultiplication well defined?
(2) For which complexes \mathcal{K} the Hopf algebra $H_{*}(\Omega \mathrm{DJ}(\mathcal{K}) ; \mathbb{k})$ is primitively generated? (Always the case if \mathbb{k} is a field.)
(3) Give an explicit dga model for $C_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right)$. In particular: prove (or disprove) that $C_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right) \sim \Omega\left[C_{*}^{C W}\left(\mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right)\right]$.
(1) Are moment-angle complexes \mathbb{Z}-coformal in the flag case?
(3) Describe Whitehead products in $\pi_{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ whenever Stanton's decomposition $\Omega \mathcal{Z}_{\mathcal{K}} \simeq \prod_{\alpha} S^{\alpha} \times \prod_{\beta} \Omega S^{\beta}$ holds.
(- Is the Stanton's decomposition " $\mathbb{Z}_{\geq 0}^{m}$-graded"?
(1) Compute $H^{*}(X(\mathcal{K}, \lambda) ; \mathbb{k}) \simeq H[\Lambda[n] \otimes \mathbb{k}[\mathcal{K}], d]$ (at least additively).
(3) In the case of quasitoric manifolds for flag complexes: prove that $H^{*}(X ; \mathbb{k})$ and $H_{*}(\Omega X ; \mathbb{k})$ are quadratic dual.

Bibliography (1/3)
R. T. C. Wall. Generators and relations for the Steenrod algebra. Ann. of Math. 72 (1960), no. 3, 429-444.
(R. Fröberg. Determination of a class of Poincaré series. Math. Scand. 37 (1975), no. 1, 29-39.
R. M. Davis and T. Januszkiewicz. Convex polytopes, Coxeter orbifolds and torus actions.
Duke Math. J. 62 (1991), 417-451.
T. E. Panov and N. Ray. Categorical aspects of toric topology. In: Toric Topology, M. Harada et al., eds. Contemp. Math., vol. 460. Amer. Math. Soc., Providence, RI, 2008, pp. 293-322.
(in A. Berglund. Koszul spaces.
Trans. Amer. Math. Soc. 366(9) (2014), 4551-4569.

Bibliography（2／3）

V．M．Buchstaber and T．E．Panov．Toric topology，volume 204 of Mathematical Surveys and Monographs．
AMS，Providence，RI（2015）．
嗇 J．Grbić，T．Panov，S．Theriault and J．Wu．The homotopy types of moment－angle complexes for flag complexes．
Trans．Amer．Math．Soc． 368 （2016），6663－6682．
围 Ya．A．Verevkin．Pontryagin algebras of some moment－angle－complexes．
Dal＇nevost．Mat．Zh．，16：1（2016），9－23．
目 M．Franz．Homotopy Gerstenhaber formality of Davis－Januszkiewicz spaces．
Homology Homotopy Appl． 23 （2021），325－347．

Bibliography (3/3)
F. E. Vylegzhanin. Pontryagin algebras and the LS-category of moment-angle complexes in the flag case.
Proc. Steklov Inst. Math. 317 (2022), 55-77.
R. Huang. Coformality around fibrations and cofibrations. Homology Homotopy Appl. 25 (2023), 1, 235-248.
(L. Stanton. Loop space decompositions of moment-angle complexes associated to flag complexes.
Quart. J. Math (haae020, 2024). arXiv:2306.12814.
目 F. Vylegzhanin. Loop homology of moment-angle complexes in the flag case.
Preprint (2024), arXiv:2403.18450.

Thank you for your attention!

Thank you for your attention!

Number of generators and relations in $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right)$

There is a natural $\mathbb{Z} \times \mathbb{Z}_{\geq 0}^{m} 0^{-}$grading on $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right)$. Let \mathbb{k} be a PID and \mathcal{K} be a flag complex on $[m]$.

Theorem (V.'24)

(1) $\exists \mathrm{a} \times \mathbb{Z}_{>0}^{m}$-homogeneous presentation of $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}}\right.$; $\left.\mathbb{k}\right)$ by $\sum_{J \subset[m]}\left(b_{0}\left(\mathcal{K}_{J}\right)-1\right)$ generators modulo $\sum_{J \subset[m]}$ gen $H_{1}\left(\mathcal{K}_{J} ; \mathbb{k}\right)$ relations.
(2) $\forall \mathbb{Z} \times \mathbb{Z}_{\geq 0}^{m}$-homogeneous presentation of $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}}\right.$; $\left.\mathbb{k}\right)$ has $\geq\left(b_{0}\left(\mathcal{K}_{J}\right)-1\right)$ generators and \geq gen $H_{1}\left(\mathcal{K}_{J} ; \mathbb{k}\right)$ relations of degree (-|J|, 2J).

This follows from $\operatorname{Tor}_{p}^{H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathfrak{k}\right)}(\mathbb{k}, \mathbb{k}) \simeq \bigoplus_{J \subset[m]} \widetilde{H}_{p-1}\left(\mathcal{K}_{J} ; \mathbb{k}\right)$.

Number of generators and relations in $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right)$

There is a natural \mathbb{Z}-grading on $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right)$. Let \mathbb{k} be a PID and \mathcal{K} be a flag complex on $[m]$.

Theorem (V.'24)

(1) \exists a \mathbb{Z}-homogeneous presentation of $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right)$ by $\sum_{J \subset[m]}\left(b_{0}\left(\mathcal{K}_{J}\right)-1\right)$ generators modulo $\sum_{n \geq 0} \operatorname{gen}\left(\bigoplus_{|J|=n} H_{1}\left(\mathcal{K}_{J} ; k\right)\right)$ relations.
(2) $\forall \mathbb{Z}$-homogeneous presentation of $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right)$ has
$\geq \sum_{|J|=n}\left(b_{0}\left(\mathcal{K}_{J}\right)-1\right)$ generators and $\geq \operatorname{gen}\left(\bigoplus_{|J|=n} H_{1}\left(\mathcal{K}_{J} ; \mathbb{k}\right)\right)$ relations of degree n.

This follows from $\operatorname{Tor}_{p}^{H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbb{k}\right)}(\mathbb{k}, \mathbb{k}) \simeq \bigoplus_{J \subset[m]} \widetilde{H}_{p-1}\left(\mathcal{K}_{J} ; \mathbb{k}\right)$.

