Loop homology of moment-angle complexes in the flag case

(based on arXiv:2403.18450 and work in progress)

Fedor Vylegzhanin

Moscow State University / Higher School of Economics, Russia

Advances in Homotopy Theory VI June 18, 2024 @ BIMSA

Outline

X a simply connected space, \mathbbm{k} a commutative ring with unit \leadsto $H_*(\Omega X; \mathbbm{k})$ — a connected associative \mathbbm{k} -algebra with unit (even a Hopf algebra if $H_*(\Omega X; \mathbbm{k})$ is free over \mathbbm{k}).

Goal: give a presentation of $H_*(\Omega X; \mathbb{k})$ by generators and relations.

We consider $X = \mathcal{Z}_{\mathcal{K}}$ and $X = EH \times_H \mathcal{Z}_{\mathcal{K}}$, where \mathcal{K} is a flag simplicial complex, $\mathcal{Z}_{\mathcal{K}}$ is the moment-angle complex and $H \subset \mathbb{T}^m$ is a subtorus.

More generally, our approach applies for fibrations $X \to E \xrightarrow{p} B$ where Ωp has a homotopy section and algebras $H_*(\Omega E; \mathbb{k})$, $H_*(\Omega B; \mathbb{k})$ are known.

Moment-angle complexes and their partial quotients

Fix an abstract simplicial complex K on vertex set $[m] = \{1, ..., m\}$. The moment-angle complex is the following CW-complex:

$$\mathcal{Z}_{\mathcal{K}} := \bigcup_{J \in \mathcal{K}} \left(\prod_{i \in J} D^2 imes \prod_{i \in [m] \setminus J} S^1
ight) \subset (D^2)^m.$$

Clearly, $\mathbb{T}^m = (S^1)^m$ acts on $\mathcal{Z}_{\mathcal{K}}$. If a closed subgroup $H \subset \mathbb{T}^m$ acts freely on $\mathcal{Z}_{\mathcal{K}}$, the \mathbb{T}^m/H -space $\mathcal{Z}_{\mathcal{K}}/H$ is called a partial quotient of $\mathcal{Z}_{\mathcal{K}}$. Up to an equivariant homeomorphism, this class contains all compact smooth toric varieties and quasitoric manifolds (Davis, Januszkiewicz).

We obtain $H \subset \mathbb{T}^m$ as $T_{\lambda} := \mathsf{Ker}(\lambda_* : \mathbb{T}^m \to \mathbb{T}^n)$ for some $\lambda : \mathbb{Z}^m \to \mathbb{Z}^n$.

Moment-angle complexes and their homotopy quotients

Fix an abstract simplicial complex K on vertex set $[m] = \{1, ..., m\}$. The moment-angle complex is the following CW-complex:

$$\mathcal{Z}_{\mathcal{K}} := \bigcup_{J \in \mathcal{K}} \left(\prod_{i \in J} D^2 \times \prod_{i \in [m] \setminus J} S^1 \right) \subset (D^2)^m.$$

Clearly, $\mathbb{T}^m=(S^1)^m$ acts on $\mathcal{Z}_{\mathcal{K}}$. For any closed subgroup $H\subset\mathbb{T}^m$ we call the \mathbb{T}^m/H -space $EH\times_H\mathcal{Z}_{\mathcal{K}}$ a homotopy quotient of $\mathcal{Z}_{\mathcal{K}}$. Up to an equivariant homotopy equivalence, this class contains all smooth toric varieties and quasitoric manifolds (Davis, Januszkiewicz / Franz).

We obtain $H \subset \mathbb{T}^m$ as $T_{\lambda} := \operatorname{Ker}(\lambda_* : \mathbb{T}^m \to \mathbb{T}^n)$ for arbitrary $\lambda : \mathbb{Z}^m \to \mathbb{Z}^n$ of full rank, and denote $X(\mathcal{K}, \lambda) := ET_{\lambda} \times_{T_{\lambda}} \mathcal{Z}_{\mathcal{K}}$.

Some homotopy fibrations

Consider the Davis-Januszkiewicz space:

$$\mathrm{DJ}(\mathcal{K}) := \bigcup_{J \in \mathcal{K}} \left(\prod_{i \in J} \mathbb{C}\mathrm{P}^{\infty} \times \prod_{i \in [m] \setminus J} \mathrm{pt} \right) \subset (\mathbb{C}\mathrm{P}^{\infty})^{m}.$$

Buchstaber, Panov: there are homotopy fibrations

$$\mathcal{Z}_{\mathcal{K}} \to \mathrm{DJ}(\mathcal{K}) \stackrel{p}{\longrightarrow} (\mathbb{C}\mathrm{P}^{\infty})^{m}, \ X(\mathcal{K},\lambda) \to \mathrm{DJ}(\mathcal{K}) \stackrel{p'}{\longrightarrow} (\mathbb{C}\mathrm{P}^{\infty})^{n}.$$

Panov, Ray: Ωp and $\Omega p'$ admit homotopy sections. Hence

$$\Omega \mathrm{DJ}(\mathcal{K}) \simeq \Omega \mathcal{Z}_{\mathcal{K}} \times \mathbb{T}^m \simeq \Omega X(\mathcal{K}, \lambda) \times \mathbb{T}^n;$$

in particular, $\pi_i(\mathrm{DJ}(\mathcal{K})) \simeq \pi_i(\mathcal{Z}_{\mathcal{K}}) \simeq \pi_i(X(\mathcal{K},\lambda))$ for $j \geq 2$.

Loop homology algebras

The results below use the split fibration $\Omega \mathcal{Z}_{\mathcal{K}} \to \Omega \mathrm{DJ}(\mathcal{K}) \to \mathbb{T}^m$ and $(\underline{\mathsf{hga-}})$ formality of $\mathrm{DJ}(\mathcal{K})$. Here \Bbbk is arbitrary, $\Bbbk[\mathcal{K}]$ is the face ring of \mathcal{K} .

Theorem (Panov, Ray'08 / V.)

- $\bullet \ \, H_*(\Omega\mathrm{DJ}(\mathcal{K}); \Bbbk) \cong \mathsf{Ext}_{\Bbbk[\mathcal{K}]}(\Bbbk, \Bbbk) \text{ as graded \Bbbk-algebras};$
- ② $H_*(\Omega \mathrm{DJ}(\mathcal{K}; \mathbb{k}) \cong H_*(\Omega \mathcal{Z}_{\mathcal{K}}; \mathbb{k}) \otimes \Lambda[u_1, \dots, u_m]$ as left $H_*(\Omega \mathcal{Z}_{\mathcal{K}}; \mathbb{k})$ -modules;
- **③** $H_*(\Omega DJ(\mathcal{K}); \mathbb{k}) \longleftrightarrow T(u_1, \dots, u_m)/(u_i^2 = 0, i = 1, \dots, m; [u_i, u_j] = 0, \{i, j\} \in \mathcal{K})$. This is the whole algebra if \mathcal{K} is a flag simplicial complex (if $I \in \mathcal{K}$ whenever $\{i, j\} \in \mathcal{K}$ for all $i, j \in I$).

Theorem (Franz'21 / V.)

Suppose that $H_*(\Omega\mathrm{DJ}(\mathcal{K});\mathbb{k})$ is a free \mathbb{k} -module (e.g. \mathcal{K} is flag). Then

- ② $H_*(\Omega\mathcal{Z}_{\mathcal{K}};\mathbb{k}) \to H_*(\Omega\mathrm{DJ}(\mathcal{K});\mathbb{k}) \to \Lambda[u_1,\ldots,u_m]$ is an extension of Hopf algebras.

Stanton's homotopy decomposition

Theorem (Stanton'23)

Let \mathcal{L} be a flag simplicial complex, and $\mathcal{K} = \mathcal{L}$ or $\mathcal{K} = \operatorname{sk}_d \mathcal{L}$. Then there is a homotopy equivalence

$$\Omega \mathcal{Z}_{\mathcal{K}} \simeq (S^3)^{\times B} \times (S^7)^{\times C} \times \prod_{\substack{n \geq 3, \\ n \neq 4,8}} (\Omega S^n)^{\times D_n}$$

for some $B, C, D_n \ge 0$. In particular,

$$\pi_{N}(\mathcal{Z}_{\mathcal{K}}) \simeq \pi_{N-1}(S^{3})^{\oplus B} \oplus \pi_{N-1}(S^{7})^{\oplus C} \oplus \bigoplus_{\substack{n \geq 3, \\ n \neq 4,8}} \pi_{N}(S^{n})^{\oplus D_{n}}.$$

Our appoach: find B, C, D_n by computing the Poincaré series of $H_*(\Omega\mathcal{Z}_{\mathcal{K}}; \mathbb{k})$, using $\operatorname{Ext}_{\mathbb{k}[\mathcal{K}]}(\mathbb{k}, \mathbb{k}) \cong H_*(\Omega \operatorname{DJ}(\mathcal{K}); \mathbb{k}) \simeq H_*(\Omega\mathcal{Z}_{\mathcal{K}}; \mathbb{k}) \otimes \Lambda[m]$.

Homotopy groups, the case $\mathcal{K} = \mathcal{K}^f$

Theorem (V.'24)

Let $\mathcal K$ be a flag simplicial complex on vertex set [m]. Then there is a homotopy equivalence

$$\Omega \mathcal{Z}_{\mathcal{K}} \simeq (S^3)^{\times B} \times (S^7)^{\times C} \times \prod_{\substack{n \geq 3, \\ n \neq 4,8}} (\Omega S^n)^{\times D_n},$$

where the numbers B, C, D_n satisfy

$$\frac{\prod_n (1-t^{n-1})^{D_n}}{(1+t^3)^B(1+t^7)^C} = (1+t)^{m-\dim(\mathcal{K})} h_{\mathcal{K}}(-t) = \sum_{J \subset [m]} (1-\chi(\mathcal{K}_J)) \cdot t^{|J|}.$$

This allows to describe homotopy groups of smooth toric varieties and quasitoric manifolds corresponding to flag complexes!

Homotopy groups, the case $\mathcal{K} = \operatorname{sk}_d \mathcal{K}^f$ (work in progress)

Theorem (V., work in progress)

Let
$$\mathcal{L}$$
 be a flag simplicial complex and $\mathcal{K} = \operatorname{sk}_d \mathcal{L}$. Denote $M := \{I \in \mathcal{L} : |I| = d+2\}$ and $N := \{J \in \mathcal{L} : |J| = d+3\}$. Then $H_*(\Omega \mathrm{DJ}(\mathcal{K}); \mathbb{k}) \cong \mathcal{T}(u_1, \ldots, u_m; w_I, I \in M)/\mathcal{I},$
$$\mathcal{I} = \left(u_i^2 = 0, \ i = 1, \ldots, m; \ [u_i, u_j] = 0, \ \{i, j\} \in \mathcal{K}; \right)$$
 $([u_i, w_I] = 0, \ i \in I \in M; \ \sum_{i \in I} [u_i, w_{J \setminus i}] = 0, \ J \in N).$

Then the Poincaré series of $H_*(\Omega \mathrm{DJ}(\mathcal{K}); \mathbb{k})$ can be computed using Gröbner bases...

Presentations of connected algebras (k is a field)

Let k be a commutative ring with unit. Graded associative k-algebra $A=\bigoplus_{n\geq 0}A_n$ with unit is connected if $A_0=k\cdot 1$. A presentation of A is any isomorphism $A\simeq T(a_1,\ldots,a_N)/(r_1=\cdots=r_M=0)$, where a_i,r_j are homogeneous elements of positive degree.

Theorem (C.T.C.Wall'60)

Let k be a field and A be an associative graded k-algebra. Let $n \ge 0$.

- \forall presentation of A has $\geq \dim_{\mathbb{K}} \operatorname{Tor}_{1}^{A}(\mathbb{K}, \mathbb{k})_{n}$ generators and $\geq \dim_{\mathbb{K}} \operatorname{Tor}_{2}^{A}(\mathbb{K}, \mathbb{k})_{n}$ relations of degree n.
- ② \exists a presentation of A with $\dim_{\mathbb{K}} \operatorname{Tor}_{1}^{A}(\mathbb{k}, \mathbb{k})_{n}$ generators and $\dim_{\mathbb{K}} \operatorname{Tor}_{2}^{A}(\mathbb{k}, \mathbb{k})_{n}$ relations of degree n.

Presentations of connected algebras (k is a PID)

Let k be a commutative ring with unit. Graded associative k-algebra $A=\bigoplus_{n\geq 0}A_n$ with unit is connected if $A_0=k\cdot 1$. A presentation of A is any isomorphism $A\simeq T(a_1,\ldots,a_N)/(r_1=\cdots=r_M=0)$, where a_i,r_j are homogeneous elements of positive degree.

Theorem (V.)

Let k be a PID and A be an associative graded k-algebra. Let $n \ge 0$.

- \forall presentation of A has $\geq \operatorname{gen} \operatorname{Tor}_1^A(\Bbbk, \Bbbk)_n$ generators and $\geq (\operatorname{gen} \operatorname{Tor}_2^A(\Bbbk, \Bbbk)_n + \operatorname{rel} \operatorname{Tor}_1^A(\Bbbk, \Bbbk)_n)$ relations of degree n.
- ② \exists a presentation of A with gen $\operatorname{Tor}_1^A(\Bbbk, \Bbbk)_n$ generators and $(\operatorname{gen} \operatorname{Tor}_2^A(\Bbbk, \Bbbk)_n + \operatorname{rel} \operatorname{Tor}_1^A(\Bbbk, \Bbbk)_n)$ relations of degree n.

Here $M \simeq \mathbb{k}^{\text{gen } M}/\mathbb{k}^{\text{rel } M}$, where gen M and rel M are the smallest possible. For example, gen $(\mathbb{Z}/6 \oplus \mathbb{Z}) = 2$, rel $(\mathbb{Z}/6 \oplus \mathbb{Z}) = 1$ if $\mathbb{k} = \mathbb{Z}$.

Presentations and the bar construction

The k-module $\operatorname{Tor}^A(k,k)$ is isomorphic to homology of the bar construction $(\overline{\mathrm{B}}(A),d)$, where $\overline{\mathrm{B}}(A)_n=(A_{>0})^{\otimes n}$.

Theorem (V.)

Choose the elements

- $a_1,\ldots,a_N\in A_{>0}\simeq \overline{\mathrm{B}}_1(A)$ whose images generate $\mathrm{Tor}_1^A(\Bbbk,\Bbbk)$;
- $\rho_r = \sum_{\beta} K_{r,\beta} \otimes L_{r,\beta} \in A_{>0} \otimes A_{>0} \simeq \overline{\mathrm{B}}_2(A)$ so that triviality of their images $d_{\overline{\mathrm{B}}}(\rho_r) \in \overline{\mathrm{B}}_1(A)$ give a sufficient set of additive relations between $[a_1], \ldots, [a_N] \in \mathrm{Tor}_1^A(\Bbbk, \Bbbk)$;
- $\sum_{\alpha} P_{i,\alpha} \otimes Q_{i,\alpha} \in A_{>0} \otimes A_{>0} \simeq \overline{\mathrm{B}}_2(A)$ whose images generate $\mathrm{Tor}_2^A(\Bbbk, \Bbbk)$ as a \Bbbk -module.

Then we have a presentation

$$A \simeq T(a_1, \ldots, a_N)/(\sum_{\alpha} \pm P_{i,\alpha} \cdot Q_{i,\alpha} = \sum_{\beta} \pm K_{r,\beta} \cdot L_{r,\beta} = 0).$$

Our approach to loop homology

Let $\mathcal K$ be a flag complex. We have: $S=H_*(\Omega\mathcal Z_{\mathcal K};\Bbbk)$ is a subalgebra in the known algebra $A=H_*(\Omega\mathrm{DJ}(\mathcal K);\Bbbk)$, and $A\simeq S\otimes_{\Bbbk}\Lambda[m]$ as a S-module. A presentation of S is computed as follows.

- We have the Fröberg resolution $(A \otimes \Bbbk \langle \mathcal{K} \rangle, d)$ of the left A-module \Bbbk . Consider it as a free resolution $(S \otimes \Lambda[m] \otimes \Bbbk \langle \mathcal{K} \rangle, \widehat{d})$ of the left S-module \Bbbk .
- ② Compute $\operatorname{Tor}^{S}(\Bbbk, \Bbbk)$ as homology of $(\Lambda[m] \otimes \Bbbk \langle \mathcal{K} \rangle, \overline{d})$.
- $\textbf{ § Construct a homology isomorphism } \overline{\varphi}: (\Lambda[m] \otimes \Bbbk \langle \mathcal{K} \rangle, \overline{d}) \to (\overline{\mathrm{B}}(S), d).$
- **①** Obtain elements in $\overline{\mathrm{B}}(S)$ corresponding to additive generators and relations in $\mathrm{Tor}^S(\Bbbk, \Bbbk)$.
- \bullet Use the previous slide to give a presentation of S.

Theorem (V.'22)

On step 2 we obtain $\operatorname{Tor}_q^{H_*(\Omega\mathcal{Z}_{\mathcal{K}};\Bbbk)}(\Bbbk, \Bbbk) \cong \bigoplus_{J \subset [m]} \widetilde{H}_{q-1}(\mathcal{K}_J; \Bbbk).$

Results: generators for $H_*(\Omega \mathcal{Z}_{\mathcal{K}}; \mathbb{k})$, flag case

Recall that the algebra $H_*(\Omega \mathrm{DJ}(\mathcal{K}); \mathbb{k})$ is generated by elements u_1, \ldots, u_m of degree 1. For $I = \{i_1 < \cdots < i_k\} \subset [m], x \in H_*(\Omega \mathrm{DJ}(\mathcal{K}); \mathbb{k})$ denote

$$c(I,x) := [u_{i_1}, [u_{i_2}, \dots [u_{i_k}, x] \dots]] \in H_*(\Omega \mathrm{DJ}(\mathcal{K}); \mathbb{k}).$$

One can show that $c(I,u_j) \in H_*(\Omega\mathcal{Z}_{\mathcal{K}};\Bbbk) \subset H_*(\Omega\mathrm{DJ}(\mathcal{K});\Bbbk)$ if $I \neq \varnothing$.

For every $J \subset [m]$ let $\Theta(J) \subset J$ contain exactly one vertex from every path component of \mathcal{K}_J not containing $\max(J)$ (for example, the minimal vertices of path components). We have $|\Theta(J)| = b_0(\mathcal{K}_J) - 1$.

Theorem (Grbić, Panov, Theriault, Wu'16 / V.)

 $H_*(\Omega \mathcal{Z}_K; \mathbb{k})$ is multiplicatively generated by the GPTW generators $\{c(J\setminus j, u_j):\ J\subset [m], j\in\Theta(J)\}$. It is a minimal set of generators.

Results: relations in $H_*(\Omega \mathcal{Z}_{\mathcal{K}}; \mathbb{k})$, flag case

Each $c(I, u_j)$ can be expressed through the GPTW generators by an explicit recursive algorithm. Denote any such expression as $\widehat{c}(I, u_i)$.

Theorem (V.'24)

For every $J \subset [m]$ choose a set of simplicial 1-cycles $\sum_{\{i < j\} \in \mathcal{K}_J} \lambda_{ij}^{\alpha}[\{i,j\}]$ in $C_1(\mathcal{K}_J; \mathbb{k})$, whose images generate the \mathbb{k} -module $H_1(\mathcal{K}_J; \mathbb{k})$. Then $H_*(\Omega \mathcal{Z}_{\mathcal{K}}; \mathbb{k})$ is presented by GPTW generators modulo the relations

$$\sum_{\substack{\{i < j\} \in \mathcal{K}_J \\ \max(A) > i, \\ \max(B) > j.}} \lambda_{ij}^{(\alpha)} \sum_{\substack{J \setminus \{i,j\} = A \sqcup B: \\ \max(A) > i, \\ \max(B) > j.}} (-1)^{\dots} \Big[\widehat{c}(A, u_i), \widehat{c}(B, u_j) \Big] = 0.$$

In particular, there is a presentation by $\sum_{J\subset [m]}(b_0(\mathcal{K}_J)-1)$ generators and $\sum_{J\subset [m]} \mathrm{gen}\, H_1(\mathcal{K}_J;\mathbb{k})$ relations. It is minimal among $\mathbb{Z}\times\mathbb{Z}_{>0}^m$ -homogeneous presentations, if \mathbb{k} is a PID.

An example: 5-cycle

For \mathcal{K} a 5-cycle, the algebra $H_*(\Omega\mathcal{Z}_{\mathcal{K}}; \Bbbk)$ is presented by 10 generators and a single relation, first computed by Veryovkin (2016, computer bruteforce). The GPTW generators:

$$[u_3, u_1], [u_4, u_1], [u_4, u_2], [u_5, u_2], [u_5, u_3], [u_1, [u_5, u_3]],$$

 $[u_2, [u_4, u_1]], [u_3, [u_4, u_1]], [u_3, [u_5, u_2]], [u_4, [u_5, u_2]].$

Our formula gives the relation:

$$-\left[[u_3, u_1], [u_4, [u_5, u_2]]\right] + \left[[u_4, u_1], [u_3, [u_5, u_2]]\right] + \left[[u_3, [u_4, u_1]], [u_5, u_2]\right]$$
$$+\left[[u_4, u_2], [u_1, [u_5, u_2]]\right] + \left[\underline{[u_1, [u_4, u_2]]}, [u_5, u_3]\right] = 0.$$

The underlined element is not a GPTW generator; however, $-[u_1,[u_4,u_2]]=[u_2,[u_4,u_1]]$ in $H_*(\Omega \mathrm{DJ}(\mathcal{K});\Bbbk)$, and $[u_2,[u_4,u_1]]$ is a generator.

Q-coformality in the flag case

Simply connected space X is \Bbbk -coformal if $C_*(\Omega X; \Bbbk) \sim H_*(\Omega X; \Bbbk)$ as dga algebras over \Bbbk . It is known that $\mathrm{DJ}(\mathcal{K})$ is coformal if and only if \mathcal{K} is flag.

Proposition (V.'24)

If K is flag, then \mathcal{Z}_{K} and all $X(K, \lambda)$ are \mathbb{Q} -coformal.

This follows from the following theorem.

Theorem (Huang'23)

Let $F \to E \to B$ be a fibration of nilpotent spaces of finite type, such that E is \mathbb{Q} -coformal and $\pi_*(F) \otimes \mathbb{Q} \to \pi_*(E) \otimes \mathbb{Q}$ is injective. Then F is \mathbb{Q} -coformal.

k-coformality in the flag case?

X a simply connected space such that $H_*(\Omega X; \mathbb{k})$ is \mathbb{k} -free \leadsto Milnor-Moore spectral sequence $E^2_{p,q} = \operatorname{Tor}_p^{H_*(\Omega X; \mathbb{k})}(\mathbb{k}, \mathbb{k})_q \Rightarrow H_{p+q}(X; \mathbb{k})$. We have $E^2 = E^{\infty}$ if X is \mathbb{k} -coformal.

Theorem (V.'22)

If $\mathcal K$ is flag, then $E^2=E^\infty$ for $\mathcal Z_{\mathcal K}$ for any \Bbbk .

Conjecture

If \mathcal{K} is flag, then $\mathcal{Z}_{\mathcal{K}}$ and all $X(\mathcal{K},\lambda)$ are coformal over any \Bbbk .

It would follow from the following generalisation of Huang's result.

Conjecture

Let $F \to E \xrightarrow{p} B$ be a fibration of simply connected spaces of finite type, such that E is k-coformal and Ωp has a homotopy section. Then F is k-coformal.

Homotopy quotients, flag case

Similar approach to loop homology of $X(\mathcal{K},\lambda)=ET^n imes_{T^n}\mathcal{Z}_{\mathcal{K}}$ gives

$$\mathsf{Tor}^{H_*(\Omega X(\mathcal{K},\lambda);\Bbbk)}(\Bbbk, \Bbbk) \simeq H[\Lambda[t_1,\ldots,t_n] \otimes \Bbbk \langle \mathcal{K} \rangle, d] \simeq H_*(X(\mathcal{K},\lambda); \Bbbk).$$

In general, we do not know the homology of this complex!

Theorem (V., work in progress)

Suppose that \mathcal{K} is flag and $X(\mathcal{K},\lambda)$ is a quasitoric manifold (or a partial quotient $\mathcal{Z}_{\mathcal{K}}/T^n$, where \mathcal{K} is a Cohen-Macaulay complex of dimension n-1). Then $H_*(\Omega X(\mathcal{K},\lambda);\mathbb{k})$ is presented by $h_1(\mathcal{K})=m-n$ generators of degree 1 (linear combinations of u_1,\ldots,u_m) modulo $h_2(\mathcal{K})$ relations of degree 2.

Results of Berglund on Koszul spaces imply that this algebra is quadratic dual to $H^*(X(\mathcal{K},\lambda);\mathbb{k})\cong \mathbb{k}[\mathcal{K}]/(t_1,\ldots,t_n)$ if $\mathbb{k}=\mathbb{Q}$, and both these algebras are Koszul. I do not know how to prove it algebraically.

Open questions

- Suppose that $H_*(\Omega \mathrm{DJ}(\mathcal{K}); \mathbb{k})$ has additive torsion (examples are known). Is the comultiplication well defined?
- ② For which complexes $\mathcal K$ the Hopf algebra $H_*(\Omega\mathrm{DJ}(\mathcal K);\mathbb k)$ is primitively generated? (Always the case if $\mathbb k$ is a field.)
- **3** Give an explicit dga model for $C_*(\Omega \mathcal{Z}_K; \Bbbk)$. In particular: prove (or disprove) that $C_*(\Omega \mathcal{Z}_K; \Bbbk) \sim \Omega[C_*^{\mathrm{CW}}(\mathcal{Z}_K; \Bbbk)]$.
- lacktriangle Are moment-angle complexes \mathbb{Z} -coformal in the flag case?
- **9** Describe Whitehead products in $\pi_*(\mathcal{Z}_{\mathcal{K}})$ whenever Stanton's decomposition $\Omega \mathcal{Z}_{\mathcal{K}} \simeq \prod_{\alpha} S^{\alpha} \times \prod_{\beta} \Omega S^{\beta}$ holds.
- Is the Stanton's decomposition " $\mathbb{Z}_{\geq 0}^m$ -graded"?
- Compute $H^*(X(\mathcal{K},\lambda);\mathbb{k}) \simeq H[\Lambda[n] \otimes \mathbb{k}[\mathcal{K}],d]$ (at least additively).
- ① In the case of quasitoric manifolds for flag complexes: prove that $H^*(X; \mathbb{K})$ and $H_*(\Omega X; \mathbb{K})$ are quadratic dual.

Bibliography (1/3)

- C. T. C. Wall. Generators and relations for the Steenrod algebra. Ann. of Math. 72 (1960), no. 3, 429-444.
- R. Fröberg. Determination of a class of Poincaré series. Math. Scand. 37 (1975), no. 1, 29-39.
- M. W. Davis and T. Januszkiewicz. Convex polytopes, Coxeter orbifolds and torus actions. Duke Math. J. 62 (1991), 417-451.
- T. E. Panov and N. Ray. Categorical aspects of toric topology. In: *Toric Topology*, M. Harada et al., eds. Contemp. Math., vol. 460. Amer. Math. Soc., Providence, RI, 2008, pp. 293–322.
- A. Berglund. Koszul spaces.
 Trans. Amer. Math. Soc. 366(9) (2014), 4551-4569.

Bibliography (2/3)

- V. M. Buchstaber and T. E. Panov. Toric topology, volume 204 of Mathematical Surveys and Monographs. AMS, Providence, RI (2015).
 - J. Grbić, T. Panov, S. Theriault and J. Wu. The homotopy types of moment-angle complexes for flag complexes.

 Trans. Amer. Math. Soc. 368 (2016), 6663-6682.
- Ya. A. Verevkin. Pontryagin algebras of some moment-angle-complexes.

 Dal'nevost. Mat. Zh., 16:1 (2016), 9-23.
- M. Franz. Homotopy Gerstenhaber formality of Davis-Januszkiewicz spaces.
 - Homology Homotopy Appl. 23 (2021), 325-347.

Bibliography (3/3)

R. Huang. Coformality around fibrations and cofibrations. Homology Homotopy Appl. 25 (2023), 1, 235-248.

L. Stanton. Loop space decompositions of moment-angle complexes associated to flag complexes.

Quart. J. Math (haae020, 2024). arXiv:2306.12814.

F. Vylegzhanin. Loop homology of moment-angle complexes in the flag case.

Preprint (2024), arXiv:2403.18450.

Thank you for your attention!

Thank you for your attention!

Number of generators and relations in $H_*(\Omega \mathcal{Z}_{\mathcal{K}}; \mathbb{k})$

There is a natural $\mathbb{Z} \times \mathbb{Z}^m_{\geq 0}$ -grading on $H_*(\Omega \mathcal{Z}_{\mathcal{K}}; \mathbb{k})$. Let \mathbb{k} be a PID and \mathcal{K} be a flag complex on [m].

Theorem (V.'24)

- ① \exists a $\mathbb{Z} \times \mathbb{Z}^m_{\geq 0}$ -homogeneous presentation of $H_*(\Omega \mathcal{Z}_{\mathcal{K}}; \mathbb{k})$ by $\sum_{J \subset [m]} (b_0(\mathcal{K}_J) 1)$ generators modulo $\sum_{J \subset [m]} \operatorname{gen} H_1(\mathcal{K}_J; \mathbb{k})$ relations.
- ② $\forall \ \mathbb{Z} \times \mathbb{Z}^m_{\geq 0}$ -homogeneous presentation of $H_*(\Omega \mathcal{Z}_{\mathcal{K}}; \mathbb{k})$ has $\geq (b_0(\mathcal{K}_J) 1)$ generators and $\geq \operatorname{gen} H_1(\mathcal{K}_J; \mathbb{k})$ relations of degree (-|J|, 2J).

This follows from $\operatorname{Tor}_p^{H_*(\Omega\mathcal{Z}_{\mathcal{K}};\Bbbk)}(\Bbbk,\Bbbk) \simeq \bigoplus_{J\subset [m]} \widetilde{H}_{p-1}(\mathcal{K}_J;\Bbbk).$

Number of generators and relations in $H_*(\Omega \mathcal{Z}_{\mathcal{K}}; \mathbb{k})$

There is a natural \mathbb{Z} -grading on $H_*(\Omega \mathcal{Z}_{\mathcal{K}}; \mathbb{k})$. Let \mathbb{k} be a PID and \mathcal{K} be a flag complex on [m].

Theorem (V.'24)

- **1** ∃ a \mathbb{Z} -homogeneous presentation of $H_*(\Omega \mathcal{Z}_{\mathcal{K}}; \mathbb{k})$ by $\sum_{J \subset [m]} (b_0(\mathcal{K}_J) 1)$ generators modulo $\sum_{n \geq 0} \operatorname{gen} \left(\bigoplus_{|J| = n} H_1(\mathcal{K}_J; \mathbb{k})\right)$ relations.
- ② \forall \mathbb{Z} -homogeneous presentation of $H_*(\Omega\mathcal{Z}_{\mathcal{K}};\mathbb{k})$ has $\geq \sum_{|J|=n} (b_0(\mathcal{K}_J)-1)$ generators and $\geq \operatorname{gen}\left(\bigoplus_{|J|=n} H_1(\mathcal{K}_J;\mathbb{k})\right)$ relations of degree n.

This follows from $\operatorname{Tor}_p^{H_*(\Omega\mathcal{Z}_{\mathcal{K}};\Bbbk)}(\Bbbk, \Bbbk) \simeq \bigoplus_{J \subset [m]} \widetilde{H}_{p-1}(\mathcal{K}_J; \Bbbk).$