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Kan-Thurston Theorem
Examples of Acyclic Groups

Relation with Toric Topology

Kan-Thurston Construction

Theorem (D. Kan, W. Thurston, 1976)

For every pointed connected CW-complex X there exists a Serre
fibration tX : TX → X which is a natural with respect to X and has
the following properties:

1 The map tX :

H∗(TX ;A) ∼= H∗(X ;A), H∗(TX ;A) ∼= H∗(X ;A)

for all π1(X )-module A.
2 TX is aspherical, i. e. TX ' K (π, 1) for some π and

1→ ker π1(X )→ π1(TX )
π1tX→ π1(X )→ 1.
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Relation with Toric Topology

Functor T

the correspondence

X 7→ TX и (f : X → Y ) 7→ (Tf : TX → TY )

defines a functor T into category of aspherical spaces
Map tX is a natural transformation between T and Id
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Kan-Thurston Theorem
Examples of Acyclic Groups

Relation with Toric Topology

Equivalence of Categories

Corollary

Following equivalence holds:

HoC W ∼= G P[Γ−1]

where HoC W is a category of CW -complexes and homotopy classes
of continuous maps between them as morphisms. Objects of G P are
pairs of discrete groups (G ,P), where P is a normal perfect subgroup
of G , morphisms are homomorphisms f : (G ,P)→ (G ′,P ′) for which
f (P) ⊂ P ′
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Kan-Thurston Theorem
Examples of Acyclic Groups

Relation with Toric Topology

Equivalence of Categories

1 In a certain sense, the Kan-Thurston construction inverts the
Quillen plus-construction

HoC W
Ho J
�

Ho()+
HoX P

Ho←X P
T
�
I

A P
Ho→ HoA P

π
�
B

G P

X P is a category of pairs (X ,P), P C π1(X ), P is perfect
A P —//— X is aspherical
G P is a category of pairs (G ,P), P C G , P is perfect

2 After certain localizations all of arrows will be invertible
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Kan-Thurston Theorem
Examples of Acyclic Groups

Relation with Toric Topology

Outline of the Proof

1 It is sufficient to prove the theorem in the case of finite simplicial
complex. Apply induction on dimension and number of cells

2 If our space is K (π, 1), where π is discrete, we will set
TK (π, 1) := K (π, 1). If is not then we will start with 1-skeleton

3 Assume that K is obtained from L by gluing of n-simplex σ
(dimσ > 2) along ∂σ ⊂ L

4 T (∂σ) is K (π, 1) by induction
5 Group π can be embedded into Cπ ⇒ there is induced mapping

g : T (∂σ)→ K (Cπ, 1).
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Kan-Thurston Theorem
Examples of Acyclic Groups

Relation with Toric Topology

Outline of the Proof

6 Then the mapping cylinder of g can be attached to TL along
T (∂σ)

7 The map t extends to the map TK → K , where K (Cπ, 1) maps
to barycenter of simplex σ

8 Statements of the theorem follow from Whitehead,
Mayer–Vietoris theorems and 5-lemma

Comment
If our space X is a finite simplicial complex, space TX can be chosen
as finite space with the same dimension
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Kan-Thurston Theorem
Examples of Acyclic Groups

Relation with Toric Topology

McDuff’s result

Theorem (D. McDuff, 1978)
Each path-connected space X qeakly equivalent with BM for certain
discrete monoid M .

Construction of monoid class. space:

• g1→ • g2→ • → ...→ • gn→ •

• g1→ • → ...→ • gi+1gi→ • → ...→ • gn→ •
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Monoids

BM and K (M , 1)

Groupification of monoids
Example of the construction
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Kan-Thurston Theorem
Examples of Acyclic Groups

Relation with Toric Topology

Monoids

Example
Consider the example which was invented by Malcev in 1937:

Consider a free monoid F = 〈a, b, c , d , x , y , u, v〉 and letM
denote quotient by relations (ax , by), (cx , dy) и (au, bv)

Malcev proved that cu 6= dv and monoidM is not canc.
There is no imbeddingM into some group
Otherwise: [d−1c] = [yx−1] = [b−1a] = [vu−1]

Hence, [cu] = [dv ]
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Relation with Toric Topology

Monoids

But

Proposition
If M is canc. and commut. then the map is injective.

Moreover,

Theorem (O. U. Lenz, 2011)
Let M be commut. monoid and ϕ : M → G group.-n. Then |ϕ| is
homotopy equivalence.
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Kan-Thurston Theorem
Examples of Acyclic Groups

Relation with Toric Topology

Higman’s Groups Hign

Definition
Hign := 〈xi , i ∈ Z/n | [xi−1, xi ] = xi〉, [x , y ] = xyx−1y−1

If n 6 3 the group Hign is trivial. For n > 4 it is non-trivial

The second construction of Hign
Suppose Ki

∼= K , Li ∼= L, where

K = 〈x , h | [h, x ] = x〉, L = 〈K0,K1 | x0 = h1〉

Hign = Gn−1 ?Z?Z L, Gn−1 = 〈K2, ...,Kn−1|x2 = h3, ..., xn−2 = hn−1〉
here we use so-called free product with amalgamation such that
〈h0, x1〉 and 〈xn−1, h2〉 are identified by h0 ∼ xn−1, x1 ∼ h2
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〈h0, x1〉 and 〈xn−1, h2〉 are identified by h0 ∼ xn−1, x1 ∼ h2
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Higman’s Groups Hign

Thus, we construct Higman’s groups by means of free product
with amalgamation and HNN-extensions

HNN-extension of the group 〈b〉 ∼= Z by isomorphic subgroups
〈b〉 ∼= 〈b2〉 gives Baumslag-Solitar group

K = BS(1, 2) = 〈a, b | a−1ba = b2〉.
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Higman’s Grpoups Hign

These observations allow us to compute homology of Hign

The group K has one-relator presentation and this relator is not
a proper power of irreducible word (as the sum of exponents
equals ±1 for the corresponding word-relator)

Theorem (E. Dyer, A. T. Vasquez, 1972)
Let P be a one relator presentation of the group G . If the relator is
not a proper power, then the geometric dimension of G is less than or
equal to 2, more concretely K (G , 1) is homotopic to usual Van
Kampen 2-complex of G.
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Higman’s Groups Hign

From the facts above we derive

Proposition
Groups Gk have following homology (in Z)

Hn(Gk) = 0, n > 2,

H1(Gk) = Z

Proposition
Higman’s groups Hign are acyclic and for K (Hign, 1) we can take
2-complex with 1 zero-cells, n one-cells, n two-cells
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Group A

Construction of A
Suppose

A = {F1 ? F2|C1
∼=φ C2},

where Fi
∼= F , Ci

∼= C ,

F = 〈a, b〉,

C = 〈u = a, v = b−1a−1bab,w = b−2ab−1a−2bab2, x =
b−3ab−1a−2bab3〉

Proposition
Group A is acyclic
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Extensions of S1 by Acyclic Groups

We want to replace the group S1 with G in the construction of
moment-angle complexes and moment-angle manifolds:
1→ A→ G → S1, where A is acyclic
Then

H•(BG ) = H•(BS1)

There is Serre fibration

BA→ BG → CP∞

It’s clear that πn(BG ) = 0 for n > 3

And for n = 2:

0→ π2(BG )→ Z→ A→ G → 0
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Extensions of S1 by Acyclic Groups

For A = Hign and A = A there is no torsion

Consequently, π2(BG ) = 0, i. e. G is aspherical
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Fibration of Polyhedral Product

Theorem
For any simplicial complex K on [m] there is the fibration

(PX ,ΩX )K → (X , pt)K → (X ,X )K

Here (X ,A) = {(X1,A1), ..., (Xm,Am)}, Ai ⊂ Xi

For any simplex I ⊂ K denote

(X ,A)I =

{
(x1, ..., xm) ∈

m∏
j=1

Xj : xj ∈ Aj , if j /∈ I

}

(X ,A)K =
⋃
I∈K

(X ,A)I =
⋃
I∈K

(∏
i∈I

Xi ×
∏
i 6=I

Ai

)
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Fibration of Polyhedral Product

If we set X = BS1 = CP∞, then

ZK → (CP∞, pt)K → (CP∞)m

The dreams
S1  G

(PX ,ΩX ) ' (Y ,G ), where Y is G -space
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Fibration of Polyhedral Product

Kan-Thurston construction allows us to obtain required fibration
of classifying spaces

F → T (CP∞)→ CP∞

Then we set X = T (CP∞) ' K (π, 1)

ΩX = π

Question
Is there a homotopy of pairs (PX , π) ' (Y , π), where Y is some
π-space (on which π acts freely)?
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