Acyclic groups and Kan-Thurston theorem

Misha Korneff

Toric topology and combinatorics

/□ ▶ ▲ 글 ▶ ▲ 글

Kan-Thurston Construction

Theorem (D. Kan, W. Thurston, 1976)

Misha Korneff Acyclic groups and Kan-Thurston theorem

э

Kan-Thurston Construction

Theorem (D. Kan, W. Thurston, 1976)

For every pointed connected CW-complex X there exists a Serre fibration $t_X : TX \rightarrow X$ which is a natural with respect to X and has the following properties:

イロト イボト イヨト イヨト

Kan-Thurston Construction

Theorem (D. Kan, W. Thurston, 1976)

For every pointed connected CW-complex X there exists a Serre fibration $t_X : TX \to X$ which is a natural with respect to X and has the following properties:

• The map t_X :

```
H_*(TX; A) \cong H_*(X; A), \ H^*(TX; A) \cong H^*(X; A)
```

for all $\pi_1(X)$ -module A.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Kan-Thurston Construction

Theorem (D. Kan, W. Thurston, 1976)

For every pointed connected CW-complex X there exists a Serre fibration $t_X : TX \to X$ which is a natural with respect to X and has the following properties:

• The map t_X :

$$H_*(TX; A) \cong H_*(X; A), \ H^*(TX; A) \cong H^*(X; A)$$

for all $\pi_1(X)$ -module A.

2 TX is aspherical, i. e. $TX \simeq K(\pi, 1)$ for some π and

$$1 \to \ker \pi_1(X) \to \pi_1(TX) \stackrel{\pi_1 t_X}{\to} \pi_1(X) \to 1.$$

イロト イポト イヨト イヨト

Functor T

< ロ > < 回 > < 回 > < 回 > < 回 >

2

Functor T

• the correspondence

$$X \mapsto TX$$
 и $(f: X \to Y) \mapsto (Tf: TX \to TY)$

defines a functor T into category of aspherical spaces

A 10

→ Ξ → < Ξ</p>

Functor T

• the correspondence

$$X \mapsto TX$$
 и $(f: X \to Y) \mapsto (Tf: TX \to TY)$

defines a functor T into category of aspherical spaces • Map t_X is a natural transformation between T and Id

.

Equivalence of Categories

Corollary

Misha Korneff Acyclic groups and Kan-Thurston theorem 4 / 24

(日)

æ

Equivalence of Categories

Corollary

Following equivalence holds:

$\mathrm{Ho}\,\mathscr{C}\mathscr{W}\cong\mathscr{G}\mathscr{P}[\Gamma^{-1}]$

(日)

э

Equivalence of Categories

Corollary

Following equivalence holds:

$$\operatorname{Ho} \mathscr{C} \mathscr{W} \cong \mathscr{G} \mathscr{P}[\Gamma^{-1}]$$

where $\operatorname{Ho} \mathscr{CW}$ is a category of CW-complexes and homotopy classes of continuous maps between them as morphisms. Objects of \mathscr{GP} are pairs of discrete groups (G, P), where P is a normal perfect subgroup of G, morphisms are homomorphisms $f : (G, P) \to (G', P')$ for which $f(P) \subset P'$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Equivalence of Categories

 In a certain sense, the Kan-Thurston construction inverts the Quillen plus-construction

伺 ト イヨト イヨト

Equivalence of Categories

۲

 In a certain sense, the Kan-Thurston construction inverts the Quillen plus-construction

 $\operatorname{Ho} \mathscr{CW} \stackrel{\operatorname{Ho} J}{\underset{\operatorname{Ho}()^+}{\overset{\operatorname{Ho}}{\longrightarrow}}} \operatorname{Ho} \mathscr{X} \mathscr{P} \stackrel{\operatorname{Ho}}{\leftarrow} \mathscr{X} \mathscr{P} \stackrel{\mathcal{T}}{\underset{I}{\overset{\operatorname{\mathcal{A}}}{\longrightarrow}}} \mathscr{A} \mathscr{P} \stackrel{\operatorname{Ho}}{\xrightarrow{\xrightarrow{}}{\rightarrow}} \operatorname{Ho} \mathscr{A} \mathscr{P} \stackrel{\pi}{\underset{B}{\overset{\operatorname{\mathcal{C}}}{\longrightarrow}}} \mathscr{G} \mathscr{P}$

周 ト イ ヨ ト イ ヨ ト

Equivalence of Categories

 In a certain sense, the Kan-Thurston construction inverts the Quillen plus-construction

 $\operatorname{Ho} \mathscr{CW} \stackrel{\operatorname{Ho} J}{\underset{\operatorname{Ho}()^{+}}{\overset{\operatorname{Ho}}{\longrightarrow}}} \operatorname{Ho} \mathscr{X} \mathscr{P} \stackrel{\operatorname{Ho}}{\leftarrow} \mathscr{X} \mathscr{P} \stackrel{\mathcal{T}}{\underset{I}{\overset{\operatorname{\mathcal{A}}}{\longrightarrow}}} \mathscr{A} \mathscr{P} \stackrel{\operatorname{Ho}}{\xrightarrow{\to}} \operatorname{Ho} \mathscr{A} \mathscr{P} \stackrel{\pi}{\underset{B}{\overset{\operatorname{\mathcal{C}}}{\longrightarrow}}} \mathscr{G} \mathscr{P}$

• \mathscr{XP} is a category of pairs (X, P), $P \lhd \pi_1(X)$, P is perfect

伺下 イヨト イヨト

Equivalence of Categories

۲

 In a certain sense, the Kan-Thurston construction inverts the Quillen plus-construction

$$\operatorname{Ho} \mathscr{CW} \stackrel{\operatorname{Ho} J}{\underset{\operatorname{Ho}()^{+}}{\overset{\operatorname{Ho}}{\longrightarrow}}} \operatorname{Ho} \mathscr{XP} \stackrel{\operatorname{Ho}}{\leftarrow} \mathscr{XP} \stackrel{\mathcal{T}}{\underset{I}{\overset{\operatorname{\mathcal{A}}}{\longrightarrow}}} \mathscr{AP} \stackrel{\operatorname{Ho}}{\xrightarrow{\to}} \operatorname{Ho} \mathscr{AP} \stackrel{\pi}{\underset{B}{\overset{\operatorname{\mathcal{C}}}{\longrightarrow}}} \mathscr{GP}$$

X 𝒫 is a category of pairs (X, P), P ⊲ π₁(X), P is perfect *A* 𝒫 −//− X is aspherical

Equivalence of Categories

 In a certain sense, the Kan-Thurston construction inverts the Quillen plus-construction

 $\operatorname{Ho} \mathscr{CW} \stackrel{\operatorname{Ho} J}{\underset{\operatorname{Ho}()^{+}}{\overset{\operatorname{Ho}}{\longrightarrow}}} \operatorname{Ho} \mathscr{X} \mathscr{P} \stackrel{\operatorname{Ho}}{\leftarrow} \mathscr{X} \mathscr{P} \stackrel{\mathcal{T}}{\underset{I}{\overset{\operatorname{\mathcal{A}}}{\longrightarrow}}} \mathscr{A} \mathscr{P} \stackrel{\operatorname{Ho}}{\xrightarrow{\rightarrow}} \operatorname{Ho} \mathscr{A} \mathscr{P} \stackrel{\pi}{\underset{B}{\overset{\operatorname{\mathcal{C}}}{\longrightarrow}}} \mathscr{G} \mathscr{P}$

- \mathscr{XP} is a category of pairs (X, P), $P \lhd \pi_1(X)$, P is perfect • $\mathscr{AP} - // - X$ is aspherical
- \mathscr{GP} is a category of pairs (G, P), $P \lhd G$, P is perfect

(4月) (4日) (4日)

Equivalence of Categories

 In a certain sense, the Kan-Thurston construction inverts the Quillen plus-construction

 $\operatorname{Ho} \mathscr{CW} \stackrel{\operatorname{Ho} J}{\underset{\operatorname{Ho}()^{+}}{\overset{\operatorname{Ho}}{\longrightarrow}}} \operatorname{Ho} \mathscr{XP} \stackrel{\operatorname{Ho}}{\leftarrow} \mathscr{XP} \stackrel{\mathcal{T}}{\underset{I}{\overset{\operatorname{\mathcal{A}}}{\longrightarrow}}} \mathscr{AP} \stackrel{\operatorname{Ho}}{\xrightarrow{\to}} \operatorname{Ho} \mathscr{AP} \stackrel{\pi}{\underset{B}{\overset{\operatorname{\mathcal{C}}}{\longrightarrow}}} \mathscr{GP}$

- *X P* is a category of pairs (X, P), P ⊲ π₁(X), P is perfect
 A P −//− X is aspherical
- \mathscr{GP} is a category of pairs (G, P), $P \lhd G$, P is perfect
- Q After certain localizations all of arrows will be invertible

(4月) (3日) (3日)

Outline of the Proof

< □ > < □ > < □ > < □ > < □ >

2

Outline of the Proof

It is sufficient to prove the theorem in the case of finite simplicial complex. Apply induction on dimension and number of cells

伺 ト イヨト イヨト

Outline of the Proof

- It is sufficient to prove the theorem in the case of finite simplicial complex. Apply induction on dimension and number of cells
- 2 If our space is $K(\pi, 1)$, where π is discrete, we will set $TK(\pi, 1) := K(\pi, 1)$. If is not then we will start with 1-skeleton

Outline of the Proof

- It is sufficient to prove the theorem in the case of finite simplicial complex. Apply induction on dimension and number of cells
- 2 If our space is $K(\pi, 1)$, where π is discrete, we will set $TK(\pi, 1) := K(\pi, 1)$. If is not then we will start with 1-skeleton
- So Assume that K is obtained from L by gluing of n-simplex σ (dim $\sigma \ge 2$) along $\partial \sigma \subset L$

Outline of the Proof

- It is sufficient to prove the theorem in the case of finite simplicial complex. Apply induction on dimension and number of cells
- 2 If our space is $K(\pi, 1)$, where π is discrete, we will set $TK(\pi, 1) := K(\pi, 1)$. If is not then we will start with 1-skeleton
- So Assume that K is obtained from L by gluing of *n*-simplex σ (dim $\sigma \ge 2$) along $\partial \sigma \subset L$
- $T(\partial \sigma)$ is $K(\pi, 1)$ by induction

Outline of the Proof

- It is sufficient to prove the theorem in the case of finite simplicial complex. Apply induction on dimension and number of cells
- 2 If our space is $K(\pi, 1)$, where π is discrete, we will set $TK(\pi, 1) := K(\pi, 1)$. If is not then we will start with 1-skeleton
- So Assume that K is obtained from L by gluing of n-simplex σ (dim $\sigma \ge 2$) along $\partial \sigma \subset L$
- $T(\partial \sigma)$ is $K(\pi, 1)$ by induction
- **6** Group π can be embedded into $C\pi \Rightarrow$ there is induced mapping

$$g: T(\partial \sigma) \to K(C\pi, 1).$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Outline of the Proof

 Then the mapping cylinder of g can be attached to TL along T(∂σ)

Outline of the Proof

- Then the mapping cylinder of g can be attached to TL along $T(\partial \sigma)$
- The map t extends to the map $TK \to K$, where $K(C\pi, 1)$ maps to barycenter of simplex σ

周 ト イ ヨ ト イ ヨ ト

Outline of the Proof

- Then the mapping cylinder of g can be attached to TL along T(∂σ)
- The map t extends to the map $TK \to K$, where $K(C\pi, 1)$ maps to barycenter of simplex σ
- Statements of the theorem follow from Whitehead, Mayer–Vietoris theorems and 5-lemma

周 ト イ ヨ ト イ ヨ ト

Outline of the Proof

- Then the mapping cylinder of g can be attached to TL along T(∂σ)
- The map t extends to the map $TK \to K$, where $K(C\pi, 1)$ maps to barycenter of simplex σ
- Statements of the theorem follow from Whitehead, Mayer–Vietoris theorems and 5-lemma

Comment

If our space X is a finite simplicial complex, space TX can be chosen as finite space with the same dimension

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

McDuff's result

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

McDuff's result

Theorem (D. McDuff, 1978)

Each path-connected space X qeakly equivalent with BM for certain discrete monoid M.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

McDuff's result

Theorem (D. McDuff, 1978)

Each path-connected space X qeakly equivalent with BM for certain discrete monoid M.

Construction of monoid class. space:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Monoids

イロト イヨト イヨト イヨ

æ

Monoids

• BM and K(M, 1)

- 4 同 1 4 回 1 4 回 1

æ

Monoids

- BM and K(M, 1)
- Groupification of monoids

/□ ▶ ▲ 글 ▶ ▲ 글

Monoids

- BM and K(M, 1)
- Groupification of monoids
- Example of the construction

A 10

• = • •

Monoids

イロト イヨト イヨト イヨ

æ

Monoids

Example

Consider the example which was invented by Malcev in 1937:

(日) (同) (三) (三)

э
Monoids

Example

Consider the example which was invented by Malcev in 1937:

• Consider a free monoid $F = \langle a, b, c, d, x, y, u, v \rangle$ and let \mathcal{M} denote quotient by relations (ax, by), (cx, dy) in (au, bv)

- 4 同 6 4 日 6 4 日 6

Monoids

Example

Consider the example which was invented by Malcev in 1937:

• Consider a free monoid $F = \langle a, b, c, d, x, y, u, v \rangle$ and let \mathcal{M} denote quotient by relations (ax, by), (cx, dy) in (au, bv)

• Malcev proved that $cu \neq dv$ and monoid \mathcal{M} is not canc.

- 4 同 1 4 回 1 4 回 1

Monoids

Example

Consider the example which was invented by Malcev in 1937:

- Consider a free monoid $F = \langle a, b, c, d, x, y, u, v \rangle$ and let \mathcal{M} denote quotient by relations (ax, by), (cx, dy) in (au, bv)
- Malcev proved that $cu \neq dv$ and monoid \mathcal{M} is not canc.
- $\bullet\,$ There is no imbedding ${\cal M}$ into some group

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Monoids

Example

Consider the example which was invented by Malcev in 1937:

- Consider a free monoid F = (a, b, c, d, x, y, u, v) and let M denote quotient by relations (ax, by), (cx, dy) μ (au, bv)
- Malcev proved that $cu \neq dv$ and monoid \mathcal{M} is not canc.
- $\bullet\,$ There is no imbedding ${\cal M}$ into some group

• Otherwise:
$$[d^{-1}c] = [yx^{-1}] = [b^{-1}a] = [vu^{-1}]$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Monoids

Example

Consider the example which was invented by Malcev in 1937:

- Consider a free monoid F = (a, b, c, d, x, y, u, v) and let M denote quotient by relations (ax, by), (cx, dy) μ (au, bv)
- Malcev proved that $cu \neq dv$ and monoid \mathcal{M} is not canc.
- $\bullet\,$ There is no imbedding ${\cal M}$ into some group
- Otherwise: $[d^{-1}c] = [yx^{-1}] = [b^{-1}a] = [vu^{-1}]$
- Hence, [cu] = [dv]

Monoids

But

Proposition

If M is canc. and commut. then the map is injective.

- 4 同 ト 4 目 ト 4 目 ト

Monoids

But

Proposition

If M is canc. and commut. then the map is injective.

Moreover,

Theorem (O. U. Lenz, 2011)

Let M be commut. monoid and $\varphi : M \to G$ group.-n. Then $|\varphi|$ is homotopy equivalence.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Higman's Groups Hig_n

э

Higman's Groups Hig_n

Definition

$$\operatorname{Hig}_{n} := \langle x_{i}, i \in \mathbb{Z}/n \mid [x_{i-1}, x_{i}] = x_{i} \rangle, [x, y] = xyx^{-1}y^{-1}$$

(日) (同) (三) (三)

э

Higman's Groups Hig_n

Definition

$$\operatorname{Hig}_{n} := \langle x_{i}, i \in \mathbb{Z}/n \mid [x_{i-1}, x_{i}] = x_{i} \rangle, \ [x, y] = xyx^{-1}y^{-1}$$

• If $n \leq 3$ the group Hig_n is trivial. For $n \geq 4$ it is non-trivial

Higman's Groups Hig_n

Definition

$$\operatorname{Hig}_{n} := \langle x_{i}, i \in \mathbb{Z}/n \mid [x_{i-1}, x_{i}] = x_{i} \rangle, \ [x, y] = xyx^{-1}y^{-1}$$

• If $n \leq 3$ the group Hig_n is trivial. For $n \geq 4$ it is non-trivial

The second construction of Hig_n

• Suppose $K_i \cong K$, $L_i \cong L$, where

$$K = \langle x, h \mid [h, x] = x \rangle, \ L = \langle K_0, K_1 \mid x_0 = h_1 \rangle$$

Higman's Groups Hig_n

Definition

$$\operatorname{Hig}_{n} := \langle x_{i}, i \in \mathbb{Z}/n \mid [x_{i-1}, x_{i}] = x_{i} \rangle, \ [x, y] = xyx^{-1}y^{-1}$$

• If $n \leq 3$ the group Hig_n is trivial. For $n \geq 4$ it is non-trivial

The second construction of Hig_n

• Suppose $K_i \cong K$, $L_i \cong L$, where

$$K = \langle x, h \mid [h, x] = x \rangle, \ L = \langle K_0, K_1 \mid x_0 = h_1 \rangle$$

•
$$\operatorname{Hig}_{n} = G_{n-1} \star_{\mathbb{Z} \star \mathbb{Z}} L, \ G_{n-1} = \langle K_{2}, ..., K_{n-1} | x_{2} = h_{3}, ..., x_{n-2} = h_{n-1} \rangle$$

Higman's Groups Hig_n

Definition

$$\operatorname{Hig}_{n} := \langle x_{i}, i \in \mathbb{Z}/n \mid [x_{i-1}, x_{i}] = x_{i} \rangle, \ [x, y] = xyx^{-1}y^{-1}$$

• If $n \leq 3$ the group Hig_n is trivial. For $n \geq 4$ it is non-trivial

The second construction of Hig_n

• Suppose $K_i \cong K$, $L_i \cong L$, where

$$K = \langle x, h \mid [h, x] = x \rangle, \ L = \langle K_0, K_1 \mid x_0 = h_1 \rangle$$

• $\operatorname{Hig}_n = G_{n-1} \star_{\mathbb{Z} \star \mathbb{Z}} L$, $G_{n-1} = \langle K_2, ..., K_{n-1} | x_2 = h_3, ..., x_{n-2} = h_{n-1} \rangle$ here we use so-called free product with amalgamation such that $\langle h_0, x_1 \rangle$ and $\langle x_{n-1}, h_2 \rangle$ are identified by $h_0 \sim x_{n-1}$, $x_1 \sim h_2$

Higman's Groups Hig_n

The second Construction of Hig_n

$$\mathcal{K} = \langle x, h \mid [h, x] = x \rangle, \ \mathcal{L} = \langle \mathcal{K}_0, \mathcal{K}_1 \mid x_0 = h_1 \rangle$$

$$G_{n-1} = \langle K_2, ..., K_{n-1} | x_2 = h_3, ..., x_{n-2} = h_{n-1} \rangle$$

$$\operatorname{Hig}_n = G_{n-1} \star_{\mathbb{Z} \star \mathbb{Z}} L$$

- 4 同 6 4 日 6 4 日

Higman's Groups Hig_n

The second Construction of Hig_n

$$\mathcal{K} = \langle x, h \mid [h, x] = x \rangle, \ \mathcal{L} = \langle \mathcal{K}_0, \mathcal{K}_1 \mid x_0 = h_1 \rangle$$

$$G_{n-1} = \langle K_2, ..., K_{n-1} | x_2 = h_3, ..., x_{n-2} = h_{n-1} \rangle$$

$$\operatorname{Hig}_n = G_{n-1} \star_{\mathbb{Z} \star \mathbb{Z}} L$$

• It is easy to see that

$$G_n = G_{n-1} \star_{\mathbb{Z}} K$$

with identification $x_{n-1} \simeq h_n$ (we added variables x_n и h_n)

Higman's Groups Hig_n

• Thus, we construct Higman's groups by means of free product with amalgamation and HNN-extensions

.

Higman's Groups Hig_n

- Thus, we construct Higman's groups by means of free product with amalgamation and HNN-extensions
- HNN-extension of the group $\langle b \rangle \cong \mathbb{Z}$ by isomorphic subgroups $\langle b \rangle \cong \langle b^2 \rangle$ gives Baumslag-Solitar group

$$K = BS(1,2) = \langle a, b \mid a^{-1}ba = b^2 \rangle.$$

Higman's Grpoups Hig_n

• These observations allow us to compute homology of Hig_n

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Higman's Grpoups Hig_n

- These observations allow us to compute homology of Hig_n
- The group K has one-relator presentation and this relator is not a proper power of irreducible word (as the sum of exponents equals ± 1 for the corresponding word-relator)

周 ト イ ヨ ト イ ヨ ト

Higman's Grpoups Hig_n

- These observations allow us to compute homology of Hig_n
- The group K has one-relator presentation and this relator is not a proper power of irreducible word (as the sum of exponents equals ± 1 for the corresponding word-relator)

Theorem (E. Dyer, A. T. Vasquez, 1972)

Let P be a one relator presentation of the group G. If the relator is not a proper power, then the geometric dimension of G is less than or equal to 2, more concretely K(G, 1) is homotopic to usual Van Kampen 2-complex of G.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Higman's Groups Hig_n

From the facts above we derive

伺 ト イヨト イヨト

Higman's Groups Hig_n

From the facts above we derive

Proposition

Groups G_k have following homology (in \mathbb{Z})

 $H_n(G_k)=0, n \geq 2,$

$$H_1(G_k) = \mathbb{Z}$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Higman's Groups Hig_n

From the facts above we derive

Proposition

Groups G_k have following homology (in \mathbb{Z})

$$H_n(G_k)=0, n \geq 2,$$

$$H_1(G_k) = \mathbb{Z}$$

Proposition

Higman's groups Hig_n are acyclic and for $K(\operatorname{Hig}_n, 1)$ we can take 2-complex with 1 zero-cells, n one-cells, n two-cells

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Construction of \mathfrak{A}

Suppose

$$\mathfrak{A} = \{F_1 \star F_2 | C_1 \cong_{\phi} C_2\},\$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Group \mathfrak{A}

Construction of \mathfrak{A}

Suppose

$$\mathfrak{A} = \{F_1 \star F_2 | C_1 \cong_{\phi} C_2\},\$$

where $F_i \cong F$, $C_i \cong C$,

$$\mathsf{F} = \langle \mathsf{a}, \mathsf{b} \rangle,$$

 $C = \langle u = a, v = b^{-1}a^{-1}bab, w = b^{-2}ab^{-1}a^{-2}bab^2, x = b^{-3}ab^{-1}a^{-2}bab^3 \rangle$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Group \mathfrak{A}

Construction of \mathfrak{A}

Suppose

$$\mathfrak{A} = \{F_1 \star F_2 | C_1 \cong_{\phi} C_2\},\$$

where $F_i \cong F$, $C_i \cong C$,

$$F = \langle a, b \rangle,$$

$$\mathcal{C}=\langle u=a,v=b^{-1}a^{-1}bab,w=b^{-2}ab^{-1}a^{-2}bab^2,x=b^{-3}ab^{-1}a^{-2}bab^3
angle$$

Proposition

Group \mathfrak{A} is acyclic

æ

Extensions of \mathbb{S}^1 by Acyclic Groups

э

Extensions of \mathbb{S}^1 by Acyclic Groups

• We want to replace the group \mathbb{S}^1 with G in the construction of moment-angle complexes and moment-angle manifolds:

Extensions of \mathbb{S}^1 by Acyclic Groups

- We want to replace the group S¹ with G in the construction of moment-angle complexes and moment-angle manifolds:
- $1 \rightarrow A \rightarrow G \rightarrow \mathbb{S}^1$, where A is acyclic

Extensions of \mathbb{S}^1 by Acyclic Groups

- We want to replace the group \mathbb{S}^1 with G in the construction of moment-angle complexes and moment-angle manifolds:
- $1 o A o G o \mathbb{S}^1$, where A is acyclic
- Then

$$H_{ullet}(\mathbb{B}G) = H_{ullet}(\mathbb{B}\mathbb{S}^1)$$

Extensions of \mathbb{S}^1 by Acyclic Groups

- We want to replace the group \mathbb{S}^1 with G in the construction of moment-angle complexes and moment-angle manifolds:
- $1 o A o G o \mathbb{S}^1$, where A is acyclic

Then

$$H_{ullet}(\mathbb{B}G) = H_{ullet}(\mathbb{B}\mathbb{S}^1)$$

• There is Serre fibration

 $\mathbb{B}A \to \mathbb{B}G \to \mathbb{C}P^{\infty}$

Extensions of \mathbb{S}^1 by Acyclic Groups

- We want to replace the group \mathbb{S}^1 with G in the construction of moment-angle complexes and moment-angle manifolds:
- $1 o A o G o \mathbb{S}^1$, where A is acyclic

Then

$$H_{ullet}(\mathbb{B}G) = H_{ullet}(\mathbb{B}\mathbb{S}^1)$$

• There is Serre fibration

 $\mathbb{B}A \to \mathbb{B}G \to \mathbb{C}P^{\infty}$

• It's clear that $\pi_n(\mathbb{B}G) = 0$ for $n \ge 3$

Extensions of \mathbb{S}^1 by Acyclic Groups

- We want to replace the group \mathbb{S}^1 with G in the construction of moment-angle complexes and moment-angle manifolds:
- $1
 ightarrow A
 ightarrow G
 ightarrow \mathbb{S}^1$, where A is acyclic

• Then

$$H_{ullet}(\mathbb{B}G) = H_{ullet}(\mathbb{B}\mathbb{S}^1)$$

• There is Serre fibration

$$\mathbb{B}A \to \mathbb{B}G \to \mathbb{C}P^{\infty}$$

- It's clear that $\pi_n(\mathbb{B}G) = 0$ for $n \ge 3$
- And for n = 2:

$$0
ightarrow \pi_2(BG)
ightarrow \mathbb{Z}
ightarrow A
ightarrow G
ightarrow 0$$

Extensions of \mathbb{S}^1 by Acyclic Groups

• For $A = \operatorname{Hig}_n$ and $A = \mathfrak{A}$ there is no torsion

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Extensions of \mathbb{S}^1 by Acyclic Groups

- For $A = \operatorname{Hig}_n$ and $A = \mathfrak{A}$ there is no torsion
- Consequently, $\pi_2(\mathbb{B}G) = 0$, i. e. G is aspherical

周 ト イ ヨ ト イ ヨ ト
Fibration of Polyhedral Product

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

æ

Fibration of Polyhedral Product

Theorem

For any simplicial complex \mathcal{K} on [m] there is the fibration

$$(P\boldsymbol{X},\Omega\boldsymbol{X})^{\mathcal{K}}
ightarrow (\boldsymbol{X},\mathrm{pt})^{\mathcal{K}}
ightarrow (\boldsymbol{X},\boldsymbol{X})^{\mathcal{K}}$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Fibration of Polyhedral Product

Theorem

For any simplicial complex \mathcal{K} on [m] there is the fibration

$$(P\boldsymbol{X},\Omega\boldsymbol{X})^{\mathcal{K}}
ightarrow (\boldsymbol{X},\mathrm{pt})^{\mathcal{K}}
ightarrow (\boldsymbol{X},\boldsymbol{X})^{\mathcal{K}}$$

• Here $(X, A) = \{(X_1, A_1), ..., (X_m, A_m)\}$, $A_i \subset X_i$

- 4 目 ト - 4 日 ト

Fibration of Polyhedral Product

Theorem

For any simplicial complex \mathcal{K} on [m] there is the fibration

$$(P\boldsymbol{X},\Omega\boldsymbol{X})^{\mathcal{K}}
ightarrow (\boldsymbol{X},\mathrm{pt})^{\mathcal{K}}
ightarrow (\boldsymbol{X},\boldsymbol{X})^{\mathcal{K}}$$

• Here
$$(X, A) = \{(X_1, A_1), ..., (X_m, A_m)\}, A_i \subset X_i$$

• For any simplex $I \subset \mathcal{K}$ denote

< ∃ >

A 10

Fibration of Polyhedral Product

Theorem

For any simplicial complex \mathcal{K} on [m] there is the fibration

$$(P\boldsymbol{X},\Omega\boldsymbol{X})^{\mathcal{K}}
ightarrow (\boldsymbol{X},\mathrm{pt})^{\mathcal{K}}
ightarrow (\boldsymbol{X},\boldsymbol{X})^{\mathcal{K}}$$

• Here
$$(X, A) = \{(X_1, A_1), ..., (X_m, A_m)\}, A_i \subset X_i$$

• For any simplex $I \subset \mathcal{K}$ denote

$$(\boldsymbol{X}, \boldsymbol{A})^{I} = \left\{ (x_1, ..., x_m) \in \prod_{j=1}^m X_j : x_j \in A_j, \text{if } j \notin I
ight\}$$

伺 ト イヨト イヨト

Theorem

For any simplicial complex \mathcal{K} on [m] there is the fibration

$$(P\boldsymbol{X},\Omega\boldsymbol{X})^{\mathcal{K}}
ightarrow (\boldsymbol{X},\mathrm{pt})^{\mathcal{K}}
ightarrow (\boldsymbol{X},\boldsymbol{X})^{\mathcal{K}}$$

• Here
$$(X, A) = \{(X_1, A_1), ..., (X_m, A_m)\}, A_i \subset X_i$$

• For any simplex $I \subset \mathcal{K}$ denote

$$(\boldsymbol{X}, \boldsymbol{A})^{I} = \left\{ (x_{1}, ..., x_{m}) \in \prod_{j=1}^{m} X_{j} : x_{j} \in A_{j}, \text{ if } j \notin I \right\}$$

$$(\boldsymbol{X}, \boldsymbol{A})^{\mathcal{K}} = \bigcup_{l \in \mathcal{K}} (\boldsymbol{X}, \boldsymbol{A})^{I} = \bigcup_{l \in \mathcal{K}} \left(\prod_{i \in I} X_{i} \times \prod_{i \neq I} A_{i} \right)$$

`

Fibration of Polyhedral Product

$$ullet$$
 If we set $X=\mathbb{BS}^1=\mathbb{C}P^\infty$, then

$$\mathcal{Z}_{\mathcal{K}}
ightarrow (\mathbb{C} P^{\infty}, \mathrm{pt})^{\mathcal{K}}
ightarrow (\mathbb{C} P^{\infty})^m$$

- 4 同 6 4 日 6 4 日 6

æ

Fibration of Polyhedral Product

$$ullet$$
 If we set $X=\mathbb{BS}^1=\mathbb{C}P^\infty$, then

$$\mathcal{Z}_{\mathcal{K}}
ightarrow (\mathbb{C}P^{\infty}, \mathrm{pt})^{\mathcal{K}}
ightarrow (\mathbb{C}P^{\infty})^m$$

The dreams

- 4 同 1 4 回 1 4 回 1

э

Fibration of Polyhedral Product

• If we set
$$X=\mathbb{BS}^1=\mathbb{C}P^\infty$$
, then

$$\mathcal{Z}_{\mathcal{K}}
ightarrow (\mathbb{C}P^{\infty}, \mathrm{pt})^{\mathcal{K}}
ightarrow (\mathbb{C}P^{\infty})^m$$

The dreams

• $\mathbb{S}^1 \rightsquigarrow G$

- 4 同 1 4 回 1 4 回 1

э

Fibration of Polyhedral Product

• If we set
$$X=\mathbb{BS}^1=\mathbb{C}P^\infty$$
, then

$$\mathcal{Z}_{\mathcal{K}}
ightarrow (\mathbb{C}P^{\infty}, \mathrm{pt})^{\mathcal{K}}
ightarrow (\mathbb{C}P^{\infty})^m$$

The dreams

- $\mathbb{S}^1 \rightsquigarrow G$
- $(PX, \Omega X) \simeq (Y, G)$, where Y is G-space

- 4 同 1 4 回 1 4 回 1

Fibration of Polyhedral Product

• Kan-Thurston construction allows us to obtain required fibration of classifying spaces

A 10

- - E + - E +

Fibration of Polyhedral Product

- Kan-Thurston construction allows us to obtain required fibration of classifying spaces
- $F \to T(\mathbb{C}P^{\infty}) \to \mathbb{C}P^{\infty}$

伺 ト イヨト イヨト

- Kan-Thurston construction allows us to obtain required fibration of classifying spaces
- $F \to T(\mathbb{C}P^{\infty}) \to \mathbb{C}P^{\infty}$
- Then we set $X = T(\mathbb{C}P^{\infty}) \simeq K(\pi, 1)$

周 ト イ ヨ ト イ ヨ ト

- Kan-Thurston construction allows us to obtain required fibration of classifying spaces
- $F \to T(\mathbb{C}P^{\infty}) \to \mathbb{C}P^{\infty}$
- Then we set $X = T(\mathbb{C}P^{\infty}) \simeq K(\pi, 1)$
- $\Omega X = \pi$

周 ト イ ヨ ト イ ヨ ト

 Kan-Thurston construction allows us to obtain required fibration of classifying spaces

•
$$F \to T(\mathbb{C}P^{\infty}) \to \mathbb{C}P^{\infty}$$

- Then we set $X = T(\mathbb{C}P^{\infty}) \simeq K(\pi, 1)$
- $\Omega X = \pi$

Question

Is there a homotopy of pairs $(PX, \pi) \simeq (Y, \pi)$, where Y is some π -space (on which π acts freely)?

(4 同) (ヨ) (ヨ)

Literature

- V. Buchstaber, T. Panov, *Toric Topology*, Mathematical Surveys and Monographs, 204, American Mathematical Society, Providence, RI, 2015
- D. Kan and W. Thurston, Every connected space has the homology of a K(π, 1), Topology Vol. 15. pp. 253–258, 1976.
- C. R. F. Maunder, A Short Proof of a Theorem of Kan and Thurston, Bulletin of the London Mathematical Society, Volume 13, Issue 4, July 1981, Pages 325–327, https://doi.org/10.1112/blms/13.4.325
- Berrick, Hillman, *Perfect and acyclic subgroups of finitely* presentable groups, J. London Math. Soc. (2) 68 (2003) 683–698

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Literature

- Dyer, E., Vasquez, A. (1973), *Some small aspherical spaces*, Journal of the Australian Mathematical Society, 16(3), 332-352. doi:10.1017/S1446788700015147
- N. Monod, *Variations on a theme by Higman*, https://arxiv.org/abs/1604.05454
- G. Baumslag, E. Dyer & A. Heller, *The topology of discrete groups*, J. of Pure and Appl. Alg. 16 (1980), 1- 47. | MR 549702 | Zbl 0419.20026