Dynamics and Multivalued Groups

Mikhail Kornev Mikhail Kornev

Steklov Mathematical Institute of RAS

SIMC Youth Race Simo Toum Tarce
March 13-17-2023 March 13-17, 2023

- In different areas of research, multivalued products on
- spaces appear
• The literature on multivalued groups and their applications is large and includes articles since XIX century mostly in the context of hypergroups
- \bullet ln 1971, S. P. Novikov and V. M. Buchstaber gave the construction, predicted by characteristic classes. This construction describes a multiplication, with a product of construction describes a multiplication, with a product of any pair of elements being a non-ordered multiset of *ⁿ* points
- It led to the notion of *n*-valued groups which was given axiomatically and developed by V. M. Buchstaber
- axiomatically and developed by V. M. Buchstaber At present, a number of authors are developing *ⁿ*-valued (finite, discrete, topological or algebra geometric) group Mathematics and Mathematical Physics Mathematics and Mathematical Physics
- Since 1999, *A. P. Buchstaber and A. P. Presser and became*
develop some applications of *n*-valued group theory to
discrete dunamical sustems discrete dynamical systems
• In 2010, V. Dragović showed the associativity equation for
- In 2010, V. Dragovič showed the associativity equation for 2-valued group explains the Kovalevskaya top integrability mechanism

We will talk about

- Symbolic Dynamics
- Tiling theory
- Multivalued Group theory
- their connections and some author's results their connections and some author's results

Combinatorics on Words Preliminaries Combinatorics on Words Preliminaries

- *Alphabet ^A* is a finite set, consisting of letters
- *A ∗* stands for the *monoid of finite words* in an alphabet *^A*
- *A ω* stands for the set of *right infinite words*
- A word *w* ∈ *A*^ω is *periodic* if it is of the form *w = uvvv*... for
some *u* ν ∈ 4* some *u, ^v [∈] ^A ∗*
- A word *^w [∈] ^A ω* is *aperiodic* (or, *quasi-periodic*) if it is not
- periodici
Periodici *Factor* is a finite continuous subword *^u* in *^w* ⁼ *...u...*
- Denote by $|w|$ the length of a word $w \in A^*$

Let *A* and *B* be alhabets. A *morphism* is a map $\mathcal{F}: A^* \to B^*$ satisfying

$$
\mathcal{F}(xy)=\mathcal{F}(x)\,\mathcal{F}(y)
$$

for all words *x*, $y \in A^*$, i. e., $\mathcal F$ is a homomorphism of monoids

 \overline{a} A morphism is defined by the images *^F*(*a*) of the letters $a \in A$

Combinatorics on Words Preliminaries Combinatorics on Words Preliminaries

In some cases, one can define a limit

$$
a \to \mathcal{F}(a) \to \mathcal{F}(\mathcal{F}(a)) \to \dots \to \mathcal{F}^{\infty}(a)
$$

It is easy to see that the word $w = \mathcal{F}^{\infty}(a)$ will be *a fixed*
point i. e. $\mathcal{F}(w) = w$ *point*, i. e., $\mathcal{F}(w) = w$

Example (Fibonacci Morphism)

$$
\mathcal{F}: \{0,1\}^* \to \{0,1\}^*, \ 0 \mapsto 01, \ 1 \mapsto 0
$$

The *infinite Fibonacci word* Φ := *^F ∞* $(0, 0)$

$\Phi = 010010100100101001010010010010...$

Example (Thue-Morse Morphism)

$$
\mathcal{F}: \{0,1\}^* \to \{0,1\}^*, \ 0 \mapsto 01, \ 1 \mapsto 10
$$

The *Thue-Morse sequence ^F ∞* $(0, 0)$

^T ⁼ ⁰¹¹⁰¹⁰⁰¹¹⁰⁰¹⁰¹¹⁰¹⁰⁰¹⁰¹¹⁰⁰¹¹⁰¹⁰⁰¹*...*

Examples of Morphisms

 $E: [a, b, c]^*$ (the concentration powers) $\mathcal{F}: \{a, b, c\}^* \to \{a, b, c\}^*$

$$
\mathcal{F}: \begin{cases} a \mapsto abc, \\ b \mapsto ac, \\ c \mapsto b \end{cases}
$$

The *infinite tribonacci word ^F ∞*(*a*) is

abcacbabcbacabcacbacabcb...

- The *factor complexity* of an infinity word *^w* is the function *^f^w* (*n*) defined as the number of its factors of length *ⁿ*
- One can show that for an infinite word *^w* there exists $C \in \mathbb{N}$ such that

$$
f_w(n)\leqslant C
$$

for evey $n \in \mathbb{N}$

Theorem (M. Morse and G. Hedlund, 1940) *Let w be an aperiodic infinite word. Then for any n ∈* N

 $f_w(n) \geqslant n+1$

Definition: In the case of equality $f_w(n) = n + 1$, a word *w* is called
Sturmian *Sturmian*

- \bullet $f_w(n) \leq |A|^n$ where *A* is an alphabet
	- \bullet $f_w(n)$ is non-decreasing function

Once Again: The Fibonacci Word
Consider the Eibonacci word constructed above

Consider the Fibonacci word constructed above

Φ = ⁰¹⁰⁰¹⁰¹⁰⁰¹⁰⁰¹⁰¹⁰⁰¹⁰¹⁰⁰¹⁰⁰¹⁰¹⁰⁰¹⁰⁰¹⁰¹⁰⁰*...*

-
- There is another way to construct Φ Consider the following recursive sequence *{*Φ*^k }* of *finite Fibonacci words*

$$
\Phi_{k+1} = \Phi_k \Phi_{k-1}
$$
, where $\Phi_0 = 0$, $\Phi_1 = 01$

*{|*Φ*^k |}* is the *Fibonacci sequence*:

$$
|\Phi_k| = F_{k+2}, \ F_{k+2} = F_{k+1} + F_k, \ F_0 = 0, \ F_1 = 1
$$

In this setting $\Psi = \lim_{n} \Psi_n$ *n*

$$
\Phi_2 = 010
$$

\n
$$
\Phi_3 = 01001
$$

\n
$$
\Phi_4 = 01001010
$$

The Fibonacci Word is Sturmian

- It turns out that the Fibonacci word is Sturmian
- It follows from the *geometric* interpretation of St It follows from the geometric interpretation of Sturmian

Some Properties of the Fibonacci Word

- The factors 11 and 000 are absent in Φ
- The factors 11 and 000 are absent in Φ
Το Πολιτικό του Φουσικό της Α The last two letters of a Fibonacci word are alternately 01
- and 10
Tu The *ⁿ*th digit of ^Φ is

$$
2+\lfloor n\varphi\rfloor-\lfloor (n+1)\varphi\rfloor,
$$

where $\varphi = (1 +$ *√* 5)*/*² is the golden rartio

The Fibonacci Word and Quasi-Quasi-Quasi-Jenne
Cut and and also mathed also

 \overline{a}

Balanced Words Balanced Words

Definition An infinity word *^w* in the alphabet *{a, b}* is called *balanced* if for any two factors *^u* and *^v* of the same length *ⁿ*

$$
||u|_a - |v|_b| = 1
$$

where $| - |_a$ denotes the number of letters *a* (the Hamming weight). weight).

• The Fibonacci word is an example of balanced word

Φ = ⁰¹⁰⁰¹⁰¹⁰⁰¹⁰⁰¹⁰¹⁰⁰¹⁰¹⁰⁰¹⁰⁰¹⁰¹⁰⁰¹⁰⁰¹⁰¹⁰⁰*...*

For the Thue-Morse word, however, it is not the case: see,
e. q. 00 and 11 e. g., 00 and 11

^T ⁼ ⁰¹¹⁰¹⁰⁰¹¹⁰⁰¹⁰¹¹⁰¹⁰⁰¹⁰¹¹⁰⁰¹¹⁰¹⁰⁰¹*...*

Definite An infinite word in two-letter alphabet is called *geometric* if it encodes intersections of a fixed line $y = \alpha x + \rho$ with vertical and horizontal lines of integer lattice

- **•** If α is rational the dynamics is periodic
- \bullet If α is irrational the one is qusi-periodic

Sturmian Words are Geometric

Corollary *For an infinite word in 2-letter alphabet the following conditions are equivalent*

• $f_w(n) = n + 1$

w is aperiodic and balanced

Markov's Result Markov's Result

 T_{max} $\left[0, \alpha, \alpha\right]$ and α the senting *Let* $\alpha = [0; a_1, a_2, \ldots]$ *be the continued fraction expansion,*
 $\alpha \in (0, 1)$. Then the word $S(\alpha)$ encoded by a line $\mu = \alpha y$ $\alpha \in (0, 1)$ *. Then the word* $S(\alpha)$ *encoded by a line y =* αx *can be written as follows*

$$
S(\alpha) = \lim_k S_k(\alpha)
$$

where

$$
S_k = S_{k-1}^{a_k} S_{k-2}
$$

with the initial conditions $S_{-1} = b$ *u* $S_0 = a$. The letters *a and b correspond to vertical and horizontal intersections respectively*

For the word length sequence $\{ |S_k| \}$ we have $|S_{-1}| = 1$, $|S_0| = 1$ and

$$
|S_k| = a_k |S_{k-1}| + |S_{k-2}|
$$

Example

Consider the line $y = \psi x$ where $\psi = 1/\varphi$, $\varphi = (1 +$ *√* 5)*/*²

$$
\psi = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}
$$

In this case, *^Sⁿ* ⁼ *^Sn−*1*Sn−*² — the Fibonacci word

Tilings
Definition

A simple tiling of \mathbb{R}^d

- There are only a finite number of tile types, up to
- \bullet Each tile is a polytope
- Tiles meet full-facet to full-facet Times meet full-facet to full-facet

The *^ε*-closeness

<u>ne computed</u> We say that tilings T_1 and T_2 are ε -close if they are agree on a
hall of radius 1/5 around the origin up to translation of size ε ball of radius ¹*/ε* around the origin, up to translation of size *^ε* <u>or less</u>

- \bullet The *orbit* of a tiling *T* is the set $\mathcal{O}(T) := \{T x \mid x \in \mathbb{R}^d\}$
of translates of *T* of translates of *^T*
	- A *tiling space* Ω is a set that is closed under translation, and complete in the tiling metric
	- and complete in the tiling metric The *hull* ^Ω*^T* of a tiling *^T* is the closure of *^O*(*^T*) with respect to the *^ε*-closure property

Tiling Spaces Space
The Spaces S

- Example Consider a simple 1-dimensional tilling *^T*⁰ with just one
	- $k = 1$ and $k = 1$ and $k = 1$ and its color is $k = 1$ Obviously, $T_0 = T_0 - 1$. So, Ω_{T_0} is a circle

Tiling Spaces Space
The Spaces S

- **Example** Consider an 1-dimensional tilling *^T*¹ with one red tile of
	- ℓ and ℓ and ℓ and ℓ is the subset of ℓ Any tiling with one red tile is in $\mathcal{O}(T_1)$, and hence in Ω_{T_1}
	- Tilings with no red tiles are also in Ω_{I_1} by simple reasons
	- $30, \Omega T_1$ hoth ar **•** So, Ω _{*T*1} looks like the circle Ω _{*T*0} and the line $\mathcal{O}(T_1)$ with both ends of the line asymptotically approaching the circle

Tiling Spaces

Tiling Spaces

Theorem

T is a si *If* T *is a simple tiling then* Ω_T *is compact*

- For a tiling *^T* one can approximate the space ^Ω*^T* via CW complexes ^Γ*ⁿ* from the *G¨ahler's construction*
- There is a sequence of forgetful maps *^fⁿ* : Γ*ⁿ*+1 *[→]* ^Γ*ⁿ*. The space ^Γ*ⁿ* knows about surrounding *ⁿ* layers in some sence
- $\frac{1}{2}$ for can form an inverse limit and it will homeomorphic to Ω*^T*

$$
\Omega_T = \varprojlim \Gamma_n
$$

In the case of substitution tilings, it is more convenient to use the *Anderson-Putnam construction* of ^Γ *′ n s*

Topological Invariants of Tiling Spaces

- Ω ^T has one connected component, but uncountably many path-component
- pant component in a tiling space is an orbit under \mathbb{R}^d
Each path component in a tiling space is an orbit under \mathbb{R}^d *π*_{*n*}(Ω*T*) = 0 and *H_n*(Ω*n*; *A*) = 0 for *n* > 0, *A* is abelian
- Čech cohomology does better

$$
\check{H}^*\left(\varprojlim \Gamma_n\right) \cong \varinjlim \check{H}^*(\Gamma_n) \cong \varinjlim H^*(\Gamma_n)
$$

$\frac{1}{2}$

 \check{H}^1 of the Fibonacci tiling space is $\mathbb{Z} \oplus \varphi \mathbb{Z}$, $\varphi = (1 + \sqrt{2})^2$ 5)*/*²

Prodefinition of *ⁿ*-valued Groups

Prodesiana production
A bunararoun is ^A *hypergroup* is a promonoidal category structure on a discrete poset *X*, whose promultiplication $X \times X \rightarrow \mathcal{G}(X)$ takes values in the 2-category of non-empty groupoids, with some additional groupal properties group in properties

Recall, a promonoidal category is a category ^C together with

- A profunctor (promultiplication) ^C *[×]* ^C *7→* ^C
- A profunctor (prounit) $J: 1 → C$
- Associativity $P \circ (P \times 1) \cong P \circ (1 \times P)$
Unit isomorphisms $P \circ (1 \times 1) \cong 1$ and
- Unit isomorphisms $P \circ (J \times 1) \stackrel{\sim}{=} 1$, and $P \circ (1 \times J) \stackrel{\sim}{=}$
 $P \circ (1 \times J) \circ (1 \times J)$

A fancy arrow $A \rightarrow B$ means a functor $B^{op} \times A \rightarrow$ Set. The composition of $F : A \rightarrow B$ and $G : B \rightarrow C$ is defined to be

$$
(G \circ F)(c, a) = \int_{a \in A}^{a \in A} F(b, a) \otimes G(c, b)
$$

Symmetric Powers of a Space

- For a topological space X, let $(X)^n$ denote its *n*-fold
summetric power i. e. $(X)^n = X^n / \sum$ where the summ symmetric power, i. e., $(X)^n = X^n / \Sigma_n$ where the symmetric
group Σ , acts by permuting the coordinates group Σ*ⁿ* acts by permuting the coordinates
- An element of $(X)^n$ is called an *n*-subset of X or just an
n set, It is a subset with multiplicities of total cardinalis *ⁿ*-set. It is a subset with multiplicities of total cardinality *ⁿ*

The spaces $(\mathbb{C})^n = \mathbb{C}^n / \Sigma_n$ and \mathbb{C}^n
S $: \mathbb{C}^n \to \mathbb{C}^n$ whose components $S: \mathbb{C}^n \to \mathbb{C}^n$ whose components are given by whose components are given by

$$
(z_1, z_2, \ldots, z_n) \rightarrow \sigma_r(z_1, z_2, \ldots, z_n), \; 1 \leq r \leq n,
$$

where σ_r is the *r*-th elementary symmetric polynomial

ⁿ-valued Group Structure

An *n-valued multiplication* on *^X* is a map

 $\mu: X \times X \to (X)^n : \mu(x, y) = x * y = [z_1, z_2, \dots, z_n], z_k = (x * y)_k$

Ass*ociativity.* The *n*²-sets

$$
[x * (y * z)1, x * (y * z)2, ..., x * (y * z)n],[(x * y)1 * z, (x * y)2 * z, ..., (x * y)n * z]
$$

are equal for all $x, y, z \in X$

- \bullet *Unit.* $e \in X$ such that $e * x = x * e = [x, x, \dots, x]$ for all *x ∈ X*
- *Inverse.* A map inv: $X \rightarrow X$ such that

 $e \in \text{inv}(x) * x$ and $e \in x * \text{inv}(x)$ for all $x \in X$

The map *^µ* defines an *ⁿ*-valued group structure on *^X* if it is associative, has a unit and an inverse

Example: 2-valued Group Structure on \mathbb{Z}_+

- Consider the semigroup of nonnegative integers \mathbb{Z}_+
- Define the multiplication $\mu: \mathbb{Z}_+ \times \mathbb{Z}_+ \to (\mathbb{Z}_+)^2$ by the formula $x * \mu = [x + \mu]x \mu$ formula *^x [∗] ^y* = [*^x* ⁺ *y, |x [−] y|*]
- *The unit:* $e = 0$
- *The inverse:* $inv(x) = x$.
- *The associativity:* one has to verify that the 4-subsets of \mathbb{Z}_+

$$
[x + y + z, |x - y - z|, x + |y - z|, |x - |y - z||]
$$

and

$$
[x + y + z, |x + y - z|, |x - y| + z, ||x - y| - z|]
$$

are equal for all nonnegative integers *x, y, ^z*

Example: *ⁿ*-valued Group Structure on ^C

Define the multiplication $\mu: \mathbb{C} \times \mathbb{C} \to (\mathbb{C})^n$ by the formula

$$
x * y = [(\sqrt[n]{x} + \varepsilon^r \sqrt[n]{y})^n, \quad 1 \leq r \leq n],
$$

where $\varepsilon \in \mathbb{Z}_n$ is a primitive *n*th root of unity
The unit: $\varepsilon = 0$

- *The unit:* $e = 0$
- *The inverse:* $inv(x) = (-1)^n x$
The multiplication is describility
- The multiplication is described by the polynomial equations

$$
p_n(x, y, z) = \prod_{k=1}^n (z - (x * y)_k) = 0
$$

 \cdots instance,

$$
p_1 = z - x - y, \quad p_2 = (z + x + y)^2 - 4(xy + yz + zx),
$$

$$
p_3 = (z - x - y)^3 - 27xyz
$$

Homomorphisms of *ⁿ*-valued Groups

 A man $f \cdot X$ A map *^f* : *^X [→] ^Y* is called *a homomorphism of n-valued groups* if

- \bullet $f(e_X) = e_Y$
- $f(\text{inv}_X(x)) = \text{inv}_Y(f(x))$ for all $x \in X$
- $\mu_Y(f(x), f(y)) = (f)^n \mu_X(x, y)$ for all $x, y \in X$

So, the class of all *ⁿ*-valued groups forms a category **MultValGrp**

Reducible *ⁿ*-valued Groups

For each *^m [∈]* ^N, an *ⁿ*-valued group on *^X*, with some multiplication μ , can be regarded as an mn -valued group by using as the multiplication the composition by using as the multiplication the composition

$$
X \times X \xrightarrow{\mu} (X)^n \xrightarrow{(D)^m} (X)^{mn}
$$
, where *D* is diagonal

Definition An *ⁿ*-valued group on *^X* is called *reducible* if there is an isomorphism $f: X \rightarrow Y$ where *Y* is an *n*-valued group with a multiplication $\mu_n = \mu_k^m$, $n = mk$

 $\frac{1}{\det f} \cdot X$ *Let ^f* : *^X [→] ^Y be a homomorphism of n-valued groups. Then*

- \bullet ker(*f*) = {*x* ∈ *X* | *f*(*x*) = e_Y } *is an n-valued group*
- *f*(*x*₁) = *f*(*x*₂) \Leftrightarrow (*f*)^{*n*}(*zx*₁) = (*f*)^{*n*}(*zx*₂) *for all z* ∈ ker(*f*)
- Suppose that the map inv : $X \rightarrow X$ *is uniquely defined. Then* ker(*f*) = {e} *if and only if any equality* $f(x_1) = f(x_2)$ *implies* $x_1 = x_2$
- \bullet lm(*f*) = {*y* ∈ *Y* | *y* = *f*(*x*), *x* ∈ *X*} *is an n-valued group*

Coset Groups

- Let *G* be a (1-valued) group with the multiplication μ_0 , the
unit equand involu) μ_0^{-1} unit *e*_{*G*}, and inv_{*G*}(*u*) = *u*⁻¹
- Let *^A ,→* Aut*^G* be a finite group of order *ⁿ*
- Denote by *^X* the quotient space *G/A* of *^G*, and denote by $\pi: G \to X$ the quotient map
- Define the *n*-valued multiplication $\mu : X \times X \rightarrow (X)^n$ by the formula

$$
\mu(x, y) = [\pi(\mu_0(u, v^a)) \mid a \in A]
$$

where $u \in \pi^{-1}(x)$, $v \in \pi^{-1}(y)$ and v^a
action of $a \in A$ on $v \in C$ is the image of the action of $a \in A$ on $v \in G$

Theorem *The multiplication µ defines some n-valued coset group structure* (*G*, *A*) *with the unit* $e_X = \pi(e_G)$ *and the non-ambiguity defined map* $inv(u) = \pi(u^{-1})$ *where* $\pi(u) = x$

Coset Groups

- Example Consider $G = \{a, b \mid a^2 = b^2 = e\}$
	- The interchange of *^a* and *^b* is an element of order 2 of Aut*^G*
	- Then we have on the set $X = G/A = \{u_{2n}, u_{2n+1}\}, n \ge 0$
where

$$
u_{2n}=[(ab)^n,(ba)^n], u_{2n+1}=[a(ba)^n,b(ab)^n]
$$

• The multiplication:

$$
u_k * u_\ell = [u_{k+\ell}, u_{|k-\ell|}]
$$

• Thus, *X* is isomorphic to the 2-valued group on \mathbb{Z}_+ constructed above constructed above

ⁿ-valued Dynamics

 An p -valued An *n*-valued dynamics T on a space Y is a map $T: Y \to (Y)^n$

If *^Y* is a state space then the *ⁿ*-valued dynamics *^T* defines possible states $T(y) = [y_1, \ldots, y_n]$ at the moment $(t + 1)$ as a state function of *^y* at the moment *^t*

Example
 O Consider *F*(*x*, *y*) = *b*₀(*x*)*y*^{*n*} + *b*₁(*x*)*y*^{*n*−1} + · · · · + *b_n*(*x*)*, x*, *y* ∈ ℂ. **2** The equation $F(x, y) = 0$ defines an *n*-valued dynamics $T: \mathbb{C} \to (\mathbb{C})^n : T(x) = [y_1, \ldots, y_n]$ where $[y_1, \ldots, y_n]$ — *n*-set of roots of $F(x, y) = 0$

ⁿ-valued Growth Function

Let *T* : *Y* → (*Y*)ⁿ be an *n*-valued dynamics. For any $y \in Y$
define the *n*-valued growth function $\mathcal{F} : \mathbb{N} \to \mathbb{N}$ where \mathcal{F} (define the *n*-valued growth function $\xi_{ij}: \mathbb{N} \to \mathbb{N}$ where $\xi_{ij}(k)$ — the number of different points in the set $T^k(y)$

Character Characterize such *ⁿ*-valued dynamics *^T* that functions *^ξ^y*(*k*) have polynomial growth for any $y \in Y$

An action of *ⁿ*-valued group *^X* on a space *^Y* is defined by the map

$$
\varphi\colon X\times Y\to (Y)^n\;:\; \varphi(x,y)=x\cdot y=[y_1,\ldots,y_n]
$$

such that

such that for any $x_1, x_2 \in X$ and $y \in Y$ the following n^2 -sets coincide:

$$
x_1 \cdot (x_2 \cdot y) = [x_1 \cdot y_1, \ldots, x_1 \cdot y_n] \text{ and } (x_1 x_2) \cdot y = [z_1 \cdot y, \ldots, z_n \cdot y]
$$

where
$$
x_2 \cdot y = [y_1, \ldots, y_n]
$$
 $\times_1 x_2 = [z_1, \ldots, z_n]$
\n• $e \cdot y = [y, \ldots, y]$ for any $y \in Y$

ⁿ-valued Cyclic Dynamics

<u>An *n*</u> valued An *ⁿ*-valued group *^X* := *⟨x⟩* is called *cyclic* if it is generated by the only element $x \in X$

Consider n Consider *n*-valued dynamics $T: Y \to (Y)^n$ with $X = \langle a \rangle$. The generator *a* is called the *generator* of the *cuclic dungmics* 7 generator *^a* is called the *generator of the cyclic dynamics ^T*

Theorem (A. A. Gaifullin, P. V. Yagodovskii, 2007) *An n-valued dynamics T has a generator a ∈ X if and only if there exists such a dynamics* T^{-1} : $Y \rightarrow (Y)^n$ *that for any* y_1 *,*
up \subset *Y the multiplicity of up in* $T(u)$ *, oquals the multiplicity y*₂ $∈$ *Y the multiplicity of* y_2 *<i>in* $T(y_1)$ *equals the multiplicity of* y_1 *in* $T^{-1}(y_2)$

ⁿ-valued Cyclic Group Growth Problem

- Let $X = \langle a \rangle$ be a cyclic *n*-valued group
- Then there is the left action of *^X* on itself

$$
T: X \to (X)^n, \ T(x) = a \cdot x
$$

Recall $\xi_a(k)$ is a number of different elements in $T^k(a)$

Denote by $\mathbb{G}_{\varphi}(G)$ **the** *n***-valued group obtained from the construction above for some ordinary group G and some** construction above for some ordinary group *^G* and some automorphism group element *^φ*

The Case of ^Z*/*³ *[∗]* ^Z*/*³ with ^Z*/*² *<* Aut

Proposition

For the group $\mathbb{Z}/3 * \mathbb{Z}/3 = \langle a, b \mid a^3 = b^3 = 1 \rangle$ and the gutomorphism $a : a \mapsto b$ the corresponding 2 valued a *automorphism* φ : $a \mapsto b$ *the corresponding 2-valued group* ^G*^φ* (Z*/*³ *[∗]* ^Z*/*3) *has the growth function*

$$
\xi_{[a,b]}(k) = F_{k+3} - 1 = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{k+3} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k+3} \right) - 1.
$$

In particular, the growth is exponential:

$$
\xi_{[a,b]}(k)\sim \frac{\varphi^{k+3}}{\sqrt{5}}
$$

where $k \to \infty$ *and* $\varphi = (1 + \frac{1}{2})$ *√* 5)*/*2*.*

ⁿ-bonacci Sequence

Definition of the second second.
The contract of the second The *n*-bonacci sequence ${F_k^{(n)}}$ is defined recursively as follows:

$$
F_k^{(n)} = F_{k-1}^{(n)} + \dots + F_{k-n}^{(n)},
$$

initial conditions are $F_0 = ... = F_{n-2} = 0$ $\ltimes F_{n-1} = 1$.

Example
Fibonacci sequence: Fibonacci sequence:

$$
0, 1, 1, 2, 3, 5, 8, 13, 21, \dots
$$

Tribonacci sequence:

⁰*,* ⁰*,* ¹*,* ¹*,* ²*,* ⁴*,* ⁷*,* ¹³*,* ²⁴*, ...*

The Case of $\mathbb{Z}/m * \mathbb{Z}/m$ with $\mathbb{Z}/2 <$ Aut

 $\frac{1}{\pi}$ *The number S^k of new words, appearing on the step k, equals*

$$
S_k = F_{k+m-2}^{(m-1)}
$$

when $k \geqslant -(m-2)$ *.*

The Case of $\mathbb{Z}/m * \mathbb{Z}/m$ with $\mathbb{Z}/2 <$ Aut

For the group $\mathbb{Z}/m * \mathbb{Z}/m = \langle a, b \mid a^m = b^m = 1 \rangle$, $m \ge 3$ with the gutomorphim $a : a \mapsto b$ we have *automorphim* φ : $a \mapsto b$ *we have*

$$
\xi_{[a,b]}(k) \sim \frac{r^{k+1}}{mr-2(m-1)}
$$

where $k \rightarrow \infty$ *and r is the positive root of the polinomial* $\chi(\lambda) = \lambda^n - \lambda^{n-1} - ... - 1$. In particular, $\mathbb{G}_{\varphi}(\mathbb{Z}/m * \mathbb{Z}/m)$ has the polinomial growth if and only if $m = 2$ *polinomial growth if and only if ^m* ⁼ ²

The Case of $(\mathbb{Z}/2)^{*s}$ with $\mathbb{Z}/s <$ Aut

Proposition *For the group* $(\mathbb{Z}/2)^{*s} = \langle a_1, ..., a_s | a_1^2 = ... = a_s^2 = 1 \rangle$ with the gutomorphism $a_i \mapsto a_j$, (indices move modulo s) we have the *automorphism* $a_i \mapsto a_{i+1}$ (indices move modulo *s*) we have the
5 valued group with the growth *s-valued group with the growth*

$$
\xi_{[a_1,...,a_s]}(k) = \begin{cases} \frac{(s-1)^k - 1}{s-2} + 1, & s \geq 3\\ k+1, & s = 2 \end{cases}
$$

In particular, the growth is polynomial if and only if $s = 2$

^Z*/*³ *[∗]* ^Z*/*³ and Symbolic Dynamics

An algorithm construction of a directed tree Γ, as vertices
having the elements of 2-valued group G:

- **⁰** We start with the vertex, corresponding to the empty set ^Λ
- λ and root of our tree **¹** Add the vertex [*a, ^b*] adjacent to the root
- **²** Add two edges to the last vertex: each of them corresponds to an addition a letter (*^a* or *^b*) on the right hand side. Now we have two words of length $2: [a^2, b^2]$ and $[ab, ba]$

^Z*/*³ *[∗]* ^Z*/*³ and Symbolic Dynamics

<u>ne computed</u> We say that a word is *cube-free* (it doesn't agree with the group $\mathbb{Z}/3 * \mathbb{Z}/3 = \langle a, b \mid a^3 = b^3 = 1 \rangle$

- **⁴** On the step *^k* we start with all cube-free words of length *k* − 1 and add for each vertex 1 or 2 edges according to the principle:
	- If a word ends with the first power of a letter then we will If a word ends with the first power of a cetter then we will
add 2 edges, corresponding to the multiplications with *a*
and *b* and b
• If a word ends with the square of a letter then we will add
	- exactly one edge, corresponding to the remaining letter
	- exactly one edge, corresponding to the remaining letter The edge, corresponding to the multiplication with *^a*, lies higher than the other one
- On the level *^k* of the tree ^Γ top down, all cube-free words of length *^k* place in lexicographic ascending order and their number is F_{k+1} . Using the binary notation $a \leftrightarrow 0$, $b \leftrightarrow 1$, this order coincides with the natural order on the binary numbers
- binary numbers If one picts, down to top, the vertex having the number F_k
on each k lovel of Γ then the resulting vertex sequence w on each *^k*-level of ^Γ then the resulting vertex sequence will form the route *ab*(*aab*) in ^Γ

Properties of Γ

Properties of Γ

The latter can be formulated more generally in the following

Proposition (M. K.) *For an infinite cube-free word* ^Ψ*, consider the factor sequence {*Θ*^k } of the form*

^Ψ*aabaabaab...* = Ψ(*aab*)

 $\Theta_1 = \Psi$, $\Theta_2 = \Psi a$, $\Theta_3 = \Psi a$, $\Theta_4 = \Psi a$ ab, $\Theta_5 = \Psi a$ aba, ...

where the last letter of pre-period word ^Ψ *differs from a. Then the number Q^k of cube-free words satisfies the recursive equality, with words being grater or equal* ^Θ*^k lexicographically:*

 $Q_k = Q_{k-1} + Q_{k-2}$.

Properties of Γ

- This construction of the tree might give some fruitful intuition about quasi-periodic words
- intuition about quasi-periodic words At present, there are gaps in the *ⁿ*-valued-group growth
- study
Ti The items above that be the subjects of further study

Thank you!