Dynamics and Multivalued Groups

Mikhail Kornev

Steklov Mathematical Institute of RAS

SIMC Youth Race March 13-17, 2023

- In different areas of research, multivalued products on spaces appear
- The literature on multivalued groups and their applications is large and includes articles since XIX century mostly in the context of hypergroups
- In 1971, S. P. Novikov and V. M. Buchstaber gave the construction, predicted by characteristic classes. This construction describes a multiplication, with a product of any pair of elements being a non-ordered multiset of *n* points

- It led to the notion of *n*-valued groups which was given axiomatically and developed by V. M. Buchstaber
- At present, a number of authors are developing *n*-valued (finite, discrete, topological or algebra geometric) group theory together with applications in various areas of Mathematics and Mathematical Physics

- Since 1996, V. M. Buchstaber and A. P. Veselov and became develop some applications of *n*-valued group theory to discrete dynamical systems
- In 2010, V. Dragović showed the associativity equation for 2-valued group explains the Kovalevskaya top integrability mechanism

We will talk about

- Symbolic Dynamics
- Tiling theory
- Multivalued Group theory
- their connections and some author's results

Combinatorics on Words Preliminaries

- *Alphabet A* is a finite set, consisting of letters
- A* stands for the *monoid of finite words* in an alphabet A
- A^{ω} stands for the set of *right infinite words*
- A word w ∈ A^w is *periodic* if it is of the form w = uvvv... for some u, v ∈ A^{*}
- A word $w \in A^{\omega}$ is *aperiodic* (or, *quasi-periodic*) if it is not periodic
- *Factor* is a finite continuous subword u in w = ...u...
- Denote by |w| the length of a word $w \in A^*$

• Let A and B be alhabets. A *morphism* is a map $\mathcal{F} : A^* \to B^*$ satisfying

$$\mathcal{F}(xy) = \mathcal{F}(x) \,\mathcal{F}(y)$$

for all words $x, y \in A^*$, i. e., \mathcal{F} is a homomorphism of monoids

• A morphism is defined by the images $\mathcal{F}(a)$ of the letters $a \in A$

Combinatorics on Words Preliminaries

• In some cases, one can define a limit

$$a \to \mathcal{F}(a) \to \mathcal{F}(\mathcal{F}(a)) \to \dots \to \mathcal{F}^{\infty}(a)$$

It is easy to see that the word w = 𝓕[∞](a) will be a fixed point, i. e., 𝓕(w) = w

Example (Fibonacci Morphism)

$$\mathcal{F}: \{0,1\}^* \to \{0,1\}^*, \ 0 \mapsto 01, \ 1 \mapsto 0$$

The *infinite Fibonacci word* $\Phi := \mathcal{F}^{\infty}(0)$ is

$\Phi = 0100101001001010010010010010010\dots$

Example (Thue-Morse Morphism)

$$\mathcal{F}: \{0,1\}^* \to \{0,1\}^*, \ 0 \mapsto 01, \ 1 \mapsto 10$$

The *Thue-Morse sequence* $\mathcal{F}^{\infty}(0)$ is

T = 01101001100101101001011001011001...

Examples of Morphisms

Example (Tribonacci Morphism)

 $\mathcal{F}:\{a,b,c\}^*\to\{a,b,c\}^*$

$$\mathcal{F}: \begin{cases} a \mapsto abc, \\ b \mapsto ac, \\ c \mapsto b \end{cases}$$

The *infinite tribonacci word* $\mathcal{F}^{\infty}(a)$ is

 $abcacbabcbacabcacbacabcb\dots$

- The *factor complexity* of an infinity word w is the function $f_w(n)$ defined as the number of its factors of length n
- One can show that for an infinite word w there exists $C \in \mathbb{N}$ such that

$$f_w(n) \leqslant C$$

for every $n \in \mathbb{N}$

Theorem (M. Morse and G. Hedlund, 1940)

Let w be an aperiodic infinite word. Then for any $n \in \mathbb{N}$

 $f_w(n) \ge n+1$

Definition

In the case of equality $f_w(n) = n + 1$, a word w is called *Sturmian*

Some easy properties:

- $f_w(n) \leq |A|^n$ where A is an alphabet
- $f_w(n)$ is non-decreasing function

Once Again: The Fibonacci Word

• Consider the Fibonacci word constructed above

- There is another way to construct $\boldsymbol{\Phi}$
- Consider the following recursive sequence {Φ_k} of *finite Fibonacci words*

$$\Phi_{k+1} = \Phi_k \Phi_{k-1}$$
, where $\Phi_0 = 0$, $\Phi_1 = 01$

• $\{|\Phi_k|\}$ is the *Fibonacci sequence*:

$$|\Phi_k| = F_{k+2}, \ F_{k+2} = F_{k+1} + F_k, \ F_0 = 0, \ F_1 = 1$$

• In this setting $\Phi = \lim_{n} \Phi_n$

$$\Phi_2 = 010$$

 $\Phi_3 = 01001$
 $\Phi_4 = 01001010$

The Fibonacci Word is Sturmian

- It turns out that the Fibonacci word is Sturmian
- It follows from the geometric interpretation of Sturmian words

$$y(x) = \psi x, \ \psi = 1/\varphi, \ \varphi = (1 + \sqrt{5})/2$$

 $\Phi_5 = 0100101001001$

Some Properties of the Fibonacci Word

- \bullet The factors 11 and 000 are absent in Φ
- The last two letters of a Fibonacci word are alternately 01 and 10
- The *n*th digit of Φ is

$$2 + \lfloor n \varphi \rfloor - \lfloor (n+1) \varphi \rfloor$$
,

where $\varphi = (1 + \sqrt{5})/2$ is the golden rartio

The Fibonacci Word and Quasi-Quasicrystals

Cut-and-projection method gives

Balanced Words

Definition

An infinity word w in the alphabet $\{a, b\}$ is called *balanced* if for any two factors u and v of the same length n

$$|u|_a - |v|_b| = 1$$

where $|-|_a$ denotes the number of letters *a* (the Hamming weight).

• The Fibonacci word is an example of balanced word

• For the Thue-Morse word, however, it is not the case: see, e. g., 00 and 11

T = 0110100110010110010110011001...

Definition

An infinite word in two-letter alphabet is called *geometric* if it encodes intersections of a fixed line $y = \alpha x + \rho$ with vertical and horizontal lines of integer lattice

- If α is rational the dynamics is periodic
- If α is irrational the one is qusi-periodic

Sturmian Words are Geometric

Corollary

For an infinite word in 2-letter alphabet the following conditions are equivalent

• $f_w(n) = n + 1$

• w is aperiodic and balanced

Markov's Result

Theorem (A. A. Markov, 1882)

Let $\alpha = [0; a_1, a_2, ...]$ be the continued fraction expansion, $\alpha \in (0, 1)$. Then the word $S(\alpha)$ encoded by a line $y = \alpha x$ can be written as follows

$$S(\alpha) = \lim_{k} S_k(\alpha)$$

where

$$S_k = S_{k-1}^{a_k} S_{k-2}$$

with the initial conditions $S_{-1} = b$ u $S_0 = a$. The letters a and b correspond to vertical and horizontal intersections respectively

For the word length sequence $\{|S_k|\}$ we have $|S_{-1}| = 1$, $|S_0| = 1$ and

$$|S_k| = a_k |S_{k-1}| + |S_{k-2}|$$

Example

• Consider the line $y = \psi x$ where $\psi = 1/\varphi$, $\varphi = (1 + \sqrt{5})/2$

$$\psi = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}$$

• In this case, $S_n = S_{n-1}S_{n-2}$ — the Fibonacci word

Tilings

Definition

A simple tiling of \mathbb{R}^d :

- There are only a finite number of tile types, up to translation
- Each tile is a polytope
- Tiles meet full-facet to full-facet

The ε -closeness

Definition

We say that tilings T_1 and T_2 are ε -close if they are agree on a ball of radius $1/\varepsilon$ around the origin, up to translation of size ε or less

Definition

- The *orbit* of a tiling T is the set $\mathcal{O}(T) := \{T x \mid x \in \mathbb{R}^d\}$ of translates of T
- A tiling space Ω is a set that is closed under translation, and complete in the tiling metric
- The *hull* Ω_T of a tiling *T* is the closure of $\mathcal{O}(T)$ with respect to the ε -closure property

Example

- Consider a simple 1-dimensional tilling T_0 with just one kind of tile. Suppose its length is 1 and its color is blue
- Obviously, $T_0 = T_0 1$. So, Ω_{T_0} is a circle

Example

- Consider an 1-dimensional tilling T_1 with one red tile of length 2 and other blue tiles of length 1
- Any tiling with one red tile is in $\mathcal{O}(\mathcal{T}_1)$, and hence in $\Omega_{\mathcal{T}_1}$
- Tilings with no red tiles are also in Ω_{T_1} by simple reasons
- So, Ω_{T_1} looks like the circle Ω_{T_0} and the line $\mathcal{O}(T_1)$ with both ends of the line asymptotically approaching the circle

Theorem

If T is a simple tiling then Ω_T is compact

- For a tiling *T* one can approximate the space Ω_T via CW complexes Γ_n from the *Gähler's construction*
- There is a sequence of forgetful maps $f_n : \Gamma_{n+1} \to \Gamma_n$. The space Γ_n knows about surrounding *n* layers in some sence
- Hence, one can form an inverse limit and it will homeomorphic to $\Omega_{\mathcal{T}}$

$$\Omega_T = \varprojlim \Gamma_n$$

• In the case of substitution tilings, it is more convenient to use the *Anderson-Putnam construction* of $\Gamma'_n s$

Topological Invariants of Tiling Spaces

- $\Omega_{\mathcal{T}}$ has one connected component, but uncountably many path-component
- Each path component in a tiling space is an orbit under \mathbb{R}^d . Such an orbit of an aperiodic tiling is contractible, so $\pi_n(\Omega_T) = 0$ and $H_n(\Omega_n; A) = 0$ for n > 0, A is abelian
- Čech cohomology does better

$$\check{H}^*\left(\varprojlim \Gamma_n\right) \cong \varinjlim \check{H}^*(\Gamma_n) \cong \varinjlim H^*(\Gamma_n)$$

Example

 \check{H}^1 of the Fibonacci tiling space is $\mathbb{Z}\oplus arphi\mathbb{Z}$, $arphi=(1+\sqrt{5})/2$

Prodefinition of *n*-valued Groups

Prodefinition

A *hypergroup* is a promonoidal category structure on a discrete poset X, whose promultiplication $X \times X \rightarrow \mathcal{G}(X)$ takes values in the 2-category of non-empty groupoids, with some additional groupal properties

Recall, a promonoidal category is a category $\ensuremath{\mathfrak{C}}$ together with

- A profunctor (promultiplication) $\mathcal{C} \times \mathcal{C} \twoheadrightarrow \mathcal{C}$
- A profunctor (prounit) $J : 1 \twoheadrightarrow \mathbb{C}$
- Associativity $P \circ (P \times 1) \cong P \circ (1 \times P)$
- Unit isomorphisms $P \circ (J \times 1) \cong 1$, and $P \circ (1 \times J) \cong 1$

A fancy arrow $A \twoheadrightarrow B$ means a functor $B^{op} \times A \longrightarrow$ Set. The composition of $F : A \twoheadrightarrow B$ and $G : B \twoheadrightarrow C$ is defined to be

$$(G \circ F)(c, a) = \int_{-\infty}^{a \in A} F(b, a) \otimes G(c, b)$$

Symmetric Powers of a Space

- For a topological space X, let $(X)^n$ denote its *n*-fold symmetric power, i. e., $(X)^n = X^n / \Sigma_n$ where the symmetric group Σ_n acts by permuting the coordinates
- An element of (X)ⁿ is called an *n*-subset of X or just an *n*-set. It is a subset with multiplicities of total cardinality n

Example

The spaces $(\mathbb{C})^n = \mathbb{C}^n / \Sigma_n$ and \mathbb{C}^n are identified using the map $S : \mathbb{C}^n \to \mathbb{C}^n$ whose components are given by

$$(z_1, z_2, \ldots, z_n) \rightarrow \sigma_r(z_1, z_2, \ldots, z_n), \ 1 \leqslant r \leqslant n,$$

where σ_r is the *r*-th elementary symmetric polynomial

n-valued Group Structure

An *n*-valued multiplication on X is a map

 $\mu: X \times X \to (X)^n : \mu(x, y) = x * y = [z_1, z_2, \dots, z_n], \ z_k = (x * y)_k$

• *Associativity.* The n^2 -sets

$$[x * (y * z)_1, x * (y * z)_2, \dots, x * (y * z)_n],$$

[(x * y)_1 * z, (x * y)_2 * z, \dots, (x * y)_n * z]

are equal for all $x, y, z \in X$

- Unit. $e \in X$ such that e * x = x * e = [x, x, ..., x] for all $x \in X$
- *Inverse*. A map inv: $X \rightarrow X$ such that

 $e \in inv(x) * x$ and $e \in x * inv(x)$ for all $x \in X$

The map μ defines an *n*-valued group structure on X if it is associative, has a unit and an inverse

Example: 2-valued Group Structure on \mathbb{Z}_+

- \bullet Consider the semigroup of nonnegative integers \mathbb{Z}_+
- Define the multiplication $\mu: \mathbb{Z}_+ \times \mathbb{Z}_+ \to (\mathbb{Z}_+)^2$ by the formula x * y = [x + y, |x y|]
- *The unit: e* = 0
- The inverse: inv(x) = x.
- *The associativity:* one has to verify that the 4-subsets of \mathbb{Z}_+

$$[x + y + z, |x - y - z|, x + |y - z|, |x - |y - z||]$$

and

$$[x + y + z, |x + y - z|, |x - y| + z, ||x - y| - z|]$$

are equal for all nonnegative integers x, y, z

Example: *n*-valued Group Structure on \mathbb{C}

• Define the multiplication $\mu \colon \mathbb{C} \times \mathbb{C} \to (\mathbb{C})^n$ by the formula

$$x * y = [(\sqrt[n]{x} + \varepsilon^r \sqrt[n]{y})^n, \quad 1 \leqslant r \leqslant n],$$

where $\varepsilon \in \mathbb{Z}_n$ is a primitive *n*th root of unity

- *The unit: e* = 0
- The inverse: $inv(x) = (-1)^n x$
- The multiplication is described by the polynomial equations

$$p_n(x, y, z) = \prod_{k=1}^n (z - (x * y)_k) = 0$$

For instance,

$$p_1 = z - x - y, \quad p_2 = (z + x + y)^2 - 4(xy + yz + zx),$$

 $p_3 = (z - x - y)^3 - 27xyz$

Homomorphisms of *n*-valued Groups

Definition

A map $f: X \rightarrow Y$ is called *a homomorphism of n-valued groups* if

- $f(e_X) = e_Y$
- $f(inv_X(x)) = inv_Y(f(x))$ for all $x \in X$
- $\mu_Y(f(x), f(y)) = (f)^n \mu_X(x, y)$ for all $x, y \in X$

So, the class of all *n*-valued groups forms a category MultValGrp

Reducible *n*-valued Groups

• For each $m \in \mathbb{N}$, an *n*-valued group on *X*, with some multiplication μ , can be regarded as an *mn*-valued group by using as the multiplication the composition

$$X \times X \xrightarrow{\mu} (X)^n \xrightarrow{(D)^m} (X)^{mn}$$
, where D is diagonal

Definition

An *n*-valued group on X is called *reducible* if there is an isomorphism $f : X \to Y$ where Y is an *n*-valued group with a multiplication $\mu_n = \mu_k^m$, n = mk

Lemma

Let $f: X \to Y$ be a homomorphism of n-valued groups. Then

- $\ker(f) = \{x \in X \mid f(x) = e_Y\}$ is an n-valued group
- $f(x_1) = f(x_2) \Leftrightarrow (f)^n(zx_1) = (f)^n(zx_2)$ for all $z \in \ker(f)$
- Suppose that the map inv : $X \rightarrow X$ is uniquely defined. Then ker(f) = {e} if and only if any equality $f(x_1) = f(x_2)$ implies $x_1 = x_2$
- $\operatorname{Im}(f) = \{y \in Y \mid y = f(x), x \in X\}$ is an n-valued group

Coset Groups

- Let G be a (1-valued) group with the multiplication μ_0 , the unit e_G , and $inv_G(u) = u^{-1}$
- Let $A \hookrightarrow \operatorname{Aut} G$ be a finite group of order n
- Denote by *X* the quotient space *G*/*A* of *G*, and denote by $\pi: G \to X$ the quotient map
- Define the *n*-valued multiplication $\mu : X \times X \to (X)^n$ by the formula

$$\mu(x, y) = [\pi(\mu_0(u, v^a)) \mid a \in A]$$

where $u \in \pi^{-1}(x)$, $v \in \pi^{-1}(y)$ and v^a is the image of the action of $a \in A$ on $v \in G$

Theorem

The multiplication μ defines some n-valued coset group structure (G, A) with the unit $e_X = \pi(e_G)$ and the non-ambiguity defined map $inv(u) = \pi(u^{-1})$ where $\pi(u) = x$

Coset Groups

Example

- Consider $G = \{a, b \mid a^2 = b^2 = e\}$
- The interchange of *a* and *b* is an element of order 2 of Aut*G*
- Then we have on the set $X = G/A = \{u_{2n}, u_{2n+1}\}, n \ge 0$ where

$$u_{2n} = [(ab)^n, (ba)^n], \ u_{2n+1} = [a(ba)^n, b(ab)^n]$$

• The multiplication:

$$u_k * u_\ell = [u_{k+\ell}, u_{|k-\ell|}]$$

• Thus, X is isomorphic to the 2-valued group on \mathbb{Z}_+ constructed above

n-valued Dynamics

Definition

An *n*-valued dynamics T on a space Y is a map $T: Y \to (Y)^n$

• If Y is a state space then the *n*-valued dynamics T defines possible states $T(y) = [y_1, \ldots, y_n]$ at the moment (t + 1) as a state function of y at the moment t

Example

Consider

F(x, y) = b₀(x)yⁿ + b₁(x)yⁿ⁻¹ + ··· + b_n(x), x, y ∈ C.

The equation F(x, y) = 0 defines an *n*-valued dynamics

T: C → (C)ⁿ : T(x) = [y₁,..., y_n]
where [y₁,..., y_n] — *n*-set of roots of F(x, y) = 0

n-valued Growth Function

• Let $T: Y \to (Y)^n$ be an *n*-valued dynamics. For any $y \in Y$ define the *n*-valued growth function $\xi_y: \mathbb{N} \to \mathbb{N}$ where $\xi_y(k)$ — the number of different points in the set $T^k(y)$

Problem

Characterize such *n*-valued dynamics *T* that functions $\xi_y(k)$ have polynomial growth for any $y \in Y$

An action of n-valued group X on a space Y is defined by the map

$$\varphi \colon X \times Y \to (Y)^n \colon \varphi(x, y) = x \cdot y = [y_1, \dots, y_n]$$

such that

• for any $x_1, x_2 \in X$ and $y \in Y$ the following n^2 -sets coincide:

$$x_1 \cdot (x_2 \cdot y) = [x_1 \cdot y_1, \dots, x_1 \cdot y_n]$$
 and $(x_1 x_2) \cdot y = [z_1 \cdot y, \dots, z_n \cdot y]$

where
$$x_2 \cdot y = [y_1, \dots, y_n]$$
 v $x_1 x_2 = [z_1, \dots, z_n]$
• $e \cdot y = [y, \dots, y]$ for any $y \in Y$

n-valued Cyclic Dynamics

Definition

An *n*-valued group $X := \langle x \rangle$ is called *cyclic* if it is generated by the only element $x \in X$

Definition

Consider *n*-valued dynamics $T: Y \to (Y)^n$ with $X = \langle a \rangle$. The generator *a* is called the *generator of the cyclic dynamics T*

Theorem (A. A. Gaifullin, P. V. Yagodovskii, 2007)

An n-valued dynamics T has a generator $a \in X$ if and only if there exists such a dynamics $T^{-1}: Y \to (Y)^n$ that for any y_1 , $y_2 \in Y$ the multiplicity of y_2 in $T(y_1)$ equals the multiplicity of y_1 in $T^{-1}(y_2)$

n-valued Cyclic Group Growth Problem

- Let $X = \langle a \rangle$ be a cyclic *n*-valued group
- Then there is the left action of *X* on itself

$$T: X \to (X)^n$$
, $T(x) = a \cdot x$

• Recall $\xi_a(k)$ is a number of different elements in $T^k(a)$

Notation

Denote by $\mathbb{G}_{\varphi}(G)$ the *n*-valued group obtained from the construction above for some ordinary group *G* and some automorphism group element φ

The Case of $\mathbb{Z}/3 * \mathbb{Z}/3$ with $\mathbb{Z}/2 < Aut$

Proposition

For the group $\mathbb{Z}/3 * \mathbb{Z}/3 = \langle a, b \mid a^3 = b^3 = 1 \rangle$ and the automorphism $\varphi : a \mapsto b$ the corresponding 2-valued group $\mathbb{G}_{\varphi}(\mathbb{Z}/3 * \mathbb{Z}/3)$ has the growth function

$$\xi_{[a,b]}(k) = F_{k+3} - 1 = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{k+3} - \left(\frac{1-\sqrt{5}}{2} \right)^{k+3} \right) - 1.$$

In particular, the growth is exponential:

$$\xi_{[a,b]}(k)\sim rac{arphi^{k+3}}{\sqrt{5}}$$

where $k \to \infty$ and $\varphi = (1 + \sqrt{5})/2$.

<mark>n-bonacci Sequence</mark>

Definition

The *n*-bonacci sequence $\{F_k^{(n)}\}$ is defined recursively as follows:

$$F_k^{(n)} = F_{k-1}^{(n)} + \dots + F_{k-n}^{(n)},$$

initial conditions are $F_0 = ... = F_{n-2} = 0$ и $F_{n-1} = 1$.

Example

Fibonacci sequence:

Tribonacci sequence:

0, 0, 1, 1, 2, 4, 7, 13, 24, ...

The Case of $\mathbb{Z}/m * \mathbb{Z}/m$ with $\mathbb{Z}/2 < \text{Aut}$

Proposition

The number S_k of new words, appearing on the step k, equals

$$S_k = F_{k+m-2}^{(m-1)}$$

when $k \ge -(m-2)$.

The Case of $\mathbb{Z}/m * \mathbb{Z}/m$ with $\mathbb{Z}/2 < \text{Aut}$

Proposition (M. K.)

For the group $\mathbb{Z}/m * \mathbb{Z}/m = \langle a, b \mid a^m = b^m = 1 \rangle$, $m \ge 3$ with the automorphim $\varphi : a \mapsto b$ we have

$$\xi_{[a,b]}(k) \sim rac{r^{k+1}}{mr-2(m-1)}$$

where $k \to \infty$ and r is the positive root of the polynomial $\chi(\lambda) = \lambda^n - \lambda^{n-1} - \dots - 1$. In particular, $\mathbb{G}_{\varphi}(\mathbb{Z}/m * \mathbb{Z}/m)$ has the polynomial growth if and only if m = 2

The Case of $(\mathbb{Z}/2)^{*s}$ with $\mathbb{Z}/s < Aut$

Proposition

For the group $(\mathbb{Z}/2)^{*s} = \langle a_1, ..., a_s | a_1^2 = ... = a_s^2 = 1 \rangle$ with the automorphism $a_i \mapsto a_{i+1}$ (indices move modulo s) we have the *s*-valued group with the growth

$$\xi_{[a_1,\dots,a_s]}(k) = \begin{cases} \frac{(s-1)^k - 1}{s-2} + 1, & s \ge 3\\ k+1, & s=2 \end{cases}$$

In particular, the growth is polynomial if and only if s = 2

$\mathbb{Z}/3 * \mathbb{Z}/3$ and Symbolic Dynamics

An algorithm construction of a directed tree Γ , as vertices having the elements of 2-valued group \mathbb{G} :

- We start with the vertex, corresponding to the empty set Λ the root of our tree
- Add the vertex [a, b] adjacent to the root
- Add two edges to the last vertex: each of them corresponds to an addition a letter (*a* or *b*) on the right hand side. Now we have two words of length 2: $[a^2, b^2]$ and [ab, ba]

$\mathbb{Z}/3 * \mathbb{Z}/3$ and Symbolic Dynamics

Definition

We say that a word is *cube-free* (it doesn't agree with the common use) if any word in the (natural) normal form of the group $\mathbb{Z}/3 * \mathbb{Z}/3 = \langle a, b \mid a^3 = b^3 = 1 \rangle$

- On the step k we start with all cube-free words of length k - 1 and add for each vertex 1 or 2 edges according to the principle:
 - If a word ends with the first power of a letter then we will add 2 edges, corresponding to the multiplications with *a* and *b*
 - If a word ends with the square of a letter then we will add exactly one edge, corresponding to the remaining letter
 - The edge, corresponding to the multiplication with *a*, lies higher than the other one

- On the level k of the tree Γ top down, all cube-free words of length k place in lexicographic ascending order and their number is F_{k+1} . Using the binary notation $a \leftrightarrow 0$, $b \leftrightarrow 1$, this order coincides with the natural order on the binary numbers
- If one picts, down to top, the vertex having the number F_k on each k-level of Γ then the resulting vertex sequence will form the route ab(aab) in Γ

Properties of Γ

Properties of Γ

The latter can be formulated more generally in the following

Proposition (M. K.)

For an infinite cube-free word $\Psi,$ consider the factor sequence $\{\Theta_k\}$ of the form

 Ψ *aabaabaab*... = Ψ (*aab*)

 $\Theta_1 = \Psi$, $\Theta_2 = \Psi a$, $\Theta_3 = \Psi aa$, $\Theta_4 = \Psi aab$, $\Theta_5 = \Psi aaba$, ...

where the last letter of pre-period word Ψ differs from a. Then the number Q_k of cube-free words satisfies the recursive equality, with words being grater or equal Θ_k lexicographically:

 $Q_k = Q_{k-1} + Q_{k-2}.$

Properties of Γ

- This construction of the tree might give some fruitful intuition about quasi-periodic words
- At present, there are gaps in the *n*-valued-group growth study
- The items above will be the subjects of further study

Thank you!