
Dynamics and Multivalued Groups
Mikhail Kornev

Steklov Mathematical Institute of RAS
SIMC Youth RaceMarch 13-17, 2023

1 / 59



Introduction
In different areas of research, multivalued products onspaces appearThe literature on multivalued groups and their applicationsis large and includes articles since XIX century mostly inthe context of hypergroupsIn 1971, S. P. Novikov and V. M. Buchstaber gave theconstruction, predicted by characteristic classes. Thisconstruction describes a multiplication, with a product ofany pair of elements being a non-ordered multiset of npoints
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Introduction
It led to the notion of n-valued groups which was givenaxiomatically and developed by V. M. BuchstaberAt present, a number of authors are developing n-valued(finite, discrete, topological or algebra geometric) grouptheory together with applications in various areas ofMathematics and Mathematical Physics
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Introduction
Since 1996, V. M. Buchstaber and A. P. Veselov and becamedevelop some applications of n-valued group theory todiscrete dynamical systemsIn 2010, V. Dragović showed the associativity equation for2-valued group explains the Kovalevskaya top integrabilitymechanism
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Introduction
We will talk aboutSymbolic DynamicsTiling theoryMultivalued Group theorytheir connections and some author’s results
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Combinatorics on Words Preliminaries
Alphabet A is a finite set, consisting of letters
A∗ stands for the monoid of finite words in an alphabet A
Aω stands for the set of right infinite wordsA word w ∈ Aω is periodic if it is of the form w = uvvv ... forsome u, v ∈ A∗A word w ∈ Aω is aperiodic (or, quasi-periodic) if it is notperiodic
Factor is a finite continuous subword u in w = ...u...Denote by |w | the length of a word w ∈ A∗
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Combinatorics on Words Preliminaries
Let A and B be alhabets. A morphism is a map F : A∗ → B∗satisfying

F (xy) = F (x)F (y)for all words x , y ∈ A∗, i. e., F is a homomorphism ofmonoidsA morphism is defined by the images F (a) of the letters
a ∈ A
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Combinatorics on Words Preliminaries
In some cases, one can define a limit

a → F (a)→ F (F (a))→ ...→ F∞(a)
It is easy to see that the word w = F∞(a) will be a fixed
point, i. e., F (w ) = w
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Examples of Morphisms
Example (Fibonacci Morphism)

F : {0, 1}∗ → {0, 1}∗, 0 7→ 01, 1 7→ 0The infinite Fibonacci word Φ := F∞(0) is
Φ = 01001010010010100101001001010010...
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Examples of Morphisms
Example (Thue-Morse Morphism)

F : {0, 1}∗ → {0, 1}∗, 0 7→ 01, 1 7→ 10The Thue-Morse sequence F∞(0) is
T = 01101001100101101001011001101001...
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Examples of Morphisms
Example (Tribonacci Morphism)
F : {a, b, c}∗ → {a, b, c}∗

F :


a 7→ abc,
b 7→ ac,
c 7→ b

The infinite tribonacci word F∞(a) is
abcacbabcbacabcacbacabcb...
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The Factor Complexity
The factor complexity of an infinity word w is the function
fw (n) defined as the number of its factors of length nOne can show that for an infinite word w there exists
C ∈ N such that

fw (n) ⩽ Cfor evey n ∈ N
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The Factor Complexity
Theorem (M. Morse and G. Hedlund, 1940)
Let w be an aperiodic infinite word. Then for any n ∈ N

fw (n) ⩾ n + 1
DefinitionIn the case of equality fw (n) = n + 1, a word w is called
SturmianSome easy properties:

fw (n) ⩽ |A|n where A is an alphabet
fw (n) is non-decreasing function
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Once Again: The Fibonacci WordConsider the Fibonacci word constructed aboveΦ = 01001010010010100101001001010010010100...There is another way to construct ΦConsider the following recursive sequence {Φk} of finite
Fibonacci wordsΦk+1 = ΦkΦk−1, where Φ0 = 0, Φ1 = 01
{|Φk |} is the Fibonacci sequence:

|Φk | = Fk+2, Fk+2 = Fk+1 + Fk , F0 = 0, F1 = 1In this setting Φ = lim
n

Φn

Φ2 = 010Φ3 = 01001Φ4 = 01001010
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The Fibonacci Word is SturmianIt turns out that the Fibonacci word is SturmianIt follows from the geometric interpretation of Sturmianwords

0
1

y(x) = ψx , ψ = 1/φ, φ = (1 +√5)/2Φ5 = 0100101001001 15 / 59



Some Properties of the Fibonacci Word
The factors 11 and 000 are absent in ΦThe last two letters of a Fibonacci word are alternately 01and 10The nth digit of Φ is

2 + ⌊nφ⌋ − ⌊(n + 1)φ⌋ ,
where φ = (1 +√5)/2 is the golden rartio
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The Fibonacci Word and Quasi-QuasicrystalsCut-and-projection method gives

0

1

y(x) = ψx + 1−ψ2 , ψ = 1/φ, φ = (1 +√5)/2
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Balanced WordsDefinitionAn infinity word w in the alphabet {a, b} is called balanced iffor any two factors u and v of the same length n

||u|a − |v |b| = 1
where | − |a denotes the number of letters a (the Hammingweight).

The Fibonacci word is an example of balanced wordΦ = 01001010010010100101001001010010010100...For the Thue-Morse word, however, it is not the case: see,e. g., 00 and 11
T = 01101001100101101001011001101001...
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Geometric Words
DefinitionAn infinite word in two-letter alphabet is called geometric if itencodes intersections of a fixed line y = αx + ρ with verticaland horizontal lines of integer lattice

If α is rational the dynamics is periodicIf α is irrational the one is qusi-periodic

19 / 59



Sturmian Words are Geometric
Corollary
For an infinite word in 2-letter alphabet the following
conditions are equivalent

fw (n) = n + 1
w is aperiodic and balanced
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Markov’s Result
Theorem (A. A. Markov, 1882)
Let α = [0; a1, a2, ...] be the continued fraction expansion,
α ∈ (0, 1). Then the word S(α) encoded by a line y = αx can be
written as follows

S(α) = lim
k

Sk (α)
where

Sk = Sak
k−1Sk−2

with the initial conditions S−1 = b и S0 = a. The letters a and b
correspond to vertical and horizontal intersections respectively

For the word length sequence {|Sk |} we have |S−1| = 1,
|S0| = 1 and

|Sk | = ak |Sk−1|+ |Sk−2|
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Markov’s Result
ExampleConsider the line y = ψx where ψ = 1/φ, φ = (1 +√5)/2

ψ = 1
1 + 1

1 + 11 + ...In this case, Sn = Sn−1Sn−2 — the Fibonacci word
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TilingsDefinitionA simple tiling of Rd :There are only a finite number of tile types, up totranslationEach tile is a polytopeTiles meet full-facet to full-facet
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The ε-closeness
DefinitionWe say that tilings T1 and T2 are ε-close if they are agree on aball of radius 1/ε around the origin, up to translation of size εor less

0

ε

( )

( )

1/ε−1/εT1

T2
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Tiling Spaces
DefinitionThe orbit of a tiling T is the set O(T ) := {T − x | x ∈ Rd}of translates of TA tiling space Ω is a set that is closed under translation,and complete in the tiling metricThe hull ΩT of a tiling T is the closure of O(T ) with respectto the ε-closure property
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Tiling Spaces
ExampleConsider a simple 1-dimensional tilling T0 with just onekind of tile. Suppose its length is 1 and its color is blueObviously, T0 = T0 − 1. So, ΩT0 is a circle
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Tiling Spaces
ExampleConsider an 1-dimensional tilling T1 with one red tile oflength 2 and other blue tiles of length 1Any tiling with one red tile is in O(T1), and hence in ΩT1Tilings with no red tiles are also in ΩT1 by simple reasonsSo, ΩT1 looks like the circle ΩT0 and the line O(T1) withboth ends of the line asymptotically approaching the circle
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Tiling Spaces
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Tiling Spaces
Theorem
If T is a simple tiling then ΩT is compact

For a tiling T one can approximate the space ΩT via CWcomplexes Γn from the Gähler’s constructionThere is a sequence of forgetful maps fn : Γn+1 → Γn. Thespace Γn knows about surrounding n layers in some senceHence, one can form an inverse limit and it willhomeomorphic to ΩT

ΩT = lim←−Γn

In the case of substitution tilings, it is more convenient touse the Anderson-Putnam construction of Γ′ns
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Topological Invariants of Tiling Spaces
ΩT has one connected component, but uncountably manypath-componentEach path component in a tiling space is an orbit under Rd .Such an orbit of an aperiodic tiling is contractible, so
πn(ΩT ) = 0 and Hn(Ωn; A) = 0 for n > 0, A is abelianČech cohomology does better

Ȟ∗
(lim←−Γn

) ∼= lim−→ Ȟ∗(Γn) ∼= lim−→H∗(Γn)
Example
Ȟ1 of the Fibonacci tiling space is Z⊕ φZ, φ = (1 +√5)/2
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Prodefinition of n-valued GroupsProdefinitionA hypergroup is a promonoidal category structure on a discreteposet X , whose promultiplication X × X → G(X ) takes values inthe 2-category of non-empty groupoids, with some additionalgroupal propertiesRecall, a promonoidal category is a category C together withA profunctor (promultiplication) C× C 7→ CA profunctor (prounit) J : 1 7→ CAssociativity P ◦ (P × 1) ∼= P ◦ (1× P)Unit isomorphisms P ◦ (J × 1) ∼= 1, and P ◦ (1× J) ∼= 1A fancy arrow A 7→ B means a functor Bop × A→ Set. Thecomposition of F : A 7→ B and G : B 7→ C is defined to be
(G ◦ F )(c, a) = a∈Aˆ

F (b, a)⊗ G(c, b)
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Symmetric Powers of a Space
For a topological space X , let (X )n denote its n-foldsymmetric power, i. e., (X )n = X n/Σn where the symmetricgroup Σn acts by permuting the coordinatesAn element of (X )n is called an n-subset of X or just an
n-set. It is a subset with multiplicities of total cardinality nExampleThe spaces (C)n = Cn/Σn and Cn are identified using the map

S : Cn → Cn whose components are given by
(z1, z2, . . . , zn)→ σr (z1, z2, . . . , zn), 1 ⩽ r ⩽ n,

where σr is the r-th elementary symmetric polynomial
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n-valued Group StructureAn n-valued multiplication on X is a map
µ : X × X → (X )n : µ(x , y) = x ∗ y = [z1, z2, . . . , zn], zk = (x ∗ y)k

Associativity. The n2-sets[x ∗ (y ∗ z)1, x ∗ (y ∗ z)2, . . . , x ∗ (y ∗ z)n],[(x ∗ y)1 ∗ z , (x ∗ y)2 ∗ z , . . . , (x ∗ y)n ∗ z ]are equal for all x , y, z ∈ X
Unit. e ∈ X such that e ∗ x = x ∗ e = [x , x , . . . , x ] for all
x ∈ X
Inverse. A map inv : X → X such that

e ∈ inv(x) ∗ x and e ∈ x ∗ inv(x) for all x ∈ X

The map µ defines an n-valued group structure on Xif it is associative, has a unit and an inverse
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Example: 2-valued Group Structure on Z+
Consider the semigroup of nonnegative integers Z+Define the multiplication µ : Z+ × Z+ → (Z+)2 by theformula x ∗ y = [x + y, |x − y|]
The unit: e = 0
The inverse: inv(x) = x .
The associativity: one has to verify that the 4-subsets of Z+

[x + y + z , |x − y − z |, x + |y − z |, |x − |y − z ||]
and

[x + y + z , |x + y − z |, |x − y|+ z , ||x − y| − z |]
are equal for all nonnegative integers x , y, z
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Example: n-valued Group Structure on CDefine the multiplication µ : C× C→ (C)n by the formula
x ∗ y = [( n

√
x + εr n

√y )n, 1 ⩽ r ⩽ n],where ε ∈ Zn is a primitive nth root of unity
The unit: e = 0
The inverse: inv(x) = (−1)nxThe multiplication is described by the polynomial equations

pn(x , y, z) = n∏
k=1
(
z − (x ∗ y)k) = 0

For instance,
p1 = z − x − y, p2 = (z + x + y)2 − 4(xy + yz + zx),

p3 = (z − x − y)3 − 27xyz
35 / 59



Homomorphisms of n-valued Groups
DefinitionA map f : X → Y is called a homomorphism of n-valued groups if

f (eX ) = eY

f (invX (x)) = invY (f (x)) for all x ∈ X
µY (f (x), f (y)) = (f )nµX (x , y) for all x , y ∈ X

So, the class of all n-valued groups forms a category
MultValGrp
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Reducible n-valued Groups
For each m ∈ N, an n-valued group on X , with somemultiplication µ, can be regarded as an mn-valued groupby using as the multiplication the composition

X × X µ−→ (X )n (D)m−→ (X )mn, where D is diagonal
DefinitionAn n-valued group on X is called reducible if there is anisomorphism f : X → Y where Y is an n-valued group with amultiplication µn = µm

k , n = mk
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Kernels and Images
Lemma
Let f : X → Y be a homomorphism of n-valued groups. Thenker(f ) = {x ∈ X | f (x) = eY} is an n-valued group

f (x1) = f (x2)⇔ (f )n(zx1) = (f )n(zx2) for all z ∈ ker(f )
Suppose that the map inv : X → X is uniquely defined.
Then ker(f ) = {e} if and only if any equality f (x1) = f (x2)
implies x1 = x2Im(f ) = {y ∈ Y | y = f (x), x ∈ X} is an n-valued group
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Coset GroupsLet G be a (1-valued) group with the multiplication µ0, theunit eG , and invG(u) = u−1Let A ↪→ AutG be a finite group of order nDenote by X the quotient space G/A of G, and denote by
π : G → X the quotient mapDefine the n-valued multiplication µ : X × X → (X )n by theformula

µ(x , y) = [π(µ0(u, va)) | a ∈ A]where u ∈ π−1(x), v ∈ π−1(y) and va is the image of theaction of a ∈ A on v ∈ GTheorem
The multiplication µ defines some n-valued coset group
structure (G,A) with the unit eX = π(eG) and the non-ambiguity
defined map inv(u) = π(u−1) where π(u) = x
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Coset Groups
ExampleConsider G = {a, b | a2 = b2 = e}The interchange of a and b is an element of order 2 of AutGThen we have on the set X = G/A = {u2n, u2n+1}, n ⩾ 0where

u2n = [(ab)n, (ba)n], u2n+1 = [a(ba)n, b(ab)n]The multiplication:
uk ∗ uℓ = [uk+ℓ , u|k−ℓ |]

Thus, X is isomorphic to the 2-valued group on Z+constructed above
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n-valued Dynamics
DefinitionAn n-valued dynamics T on a space Y is a map T : Y → (Y )n

If Y is a state space then the n-valued dynamics T definespossible states T (y) = [y1, . . . , yn] at the moment (t + 1) asa state function of y at the moment tExample
1 Consider

F (x , y) = b0(x)yn + b1(x)yn−1 + · · ·+ bn(x), x , y ∈ C.
2 The equation F (x , y) = 0 defines an n-valued dynamics

T : C→ (C)n : T (x) = [y1, . . . , yn]
where [y1, . . . , yn] — n-set of roots of F (x , y) = 0
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n-valued Growth FunctionLet T : Y → (Y )n be an n-valued dynamics. For any y ∈ Ydefine the n-valued growth function ξy : N→ N where ξy(k )— the number of different points in the set T k (y)ProblemCharacterize such n-valued dynamics T that functions ξy(k )have polynomial growth for any y ∈ Y

polynomial growth exponential growth 42 / 59



n-valued Actions
An action of n-valued group X on a space Y is defined by themap

φ : X × Y → (Y )n : φ(x , y) = x · y = [y1, . . . , yn]
such thatfor any x1, x2 ∈ X and y ∈ Y the following n2-sets coincide:

x1 · (x2 ·y) = [x1 ·y1, . . . , x1 ·yn] and (x1x2) ·y = [z1 ·y, . . . , zn ·y]
where x2 · y = [y1, . . . , yn] и x1x2 = [z1, . . . , zn]
e · y = [y, . . . , y] for any y ∈ Y
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n-valued Cyclic Dynamics
DefinitionAn n-valued group X := ⟨x⟩ is called cyclic if it is generated bythe only element x ∈ X

DefinitionConsider n-valued dynamics T : Y → (Y )n with X = ⟨a⟩. Thegenerator a is called the generator of the cyclic dynamics T

Theorem (A. A. Gaifullin, P. V. Yagodovskii, 2007)
An n-valued dynamics T has a generator a ∈ X if and only if
there exists such a dynamics T−1 : Y → (Y )n that for any y1,
y2 ∈ Y the multiplicity of y2 in T (y1) equals the multiplicity of
y1 in T−1(y2)
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n-valued Cyclic Group Growth Problem
Let X = ⟨a⟩ be a cyclic n-valued groupThen there is the left action of X on itself

T : X → (X )n, T (x) = a · x

Recall ξa(k ) is a number of different elements in T k (a)NotationDenote by Gφ(G) the n-valued group obtained from theconstruction above for some ordinary group G and someautomorphism group element φ
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The Case of Z/3 ∗ Z/3 with Z/2 < AutProposition
For the group Z/3 ∗ Z/3 = ⟨a, b | a3 = b3 = 1⟩ and the
automorphism φ : a 7→ b the corresponding 2-valued group
Gφ (Z/3 ∗ Z/3) has the growth function

ξ[a,b](k ) = Fk+3 − 1 = 1
√5
(1 +√52

)k+3
−
(1−√52

)k+3− 1.
In particular, the growth is exponential:

ξ[a,b](k ) ∼ φk+3
√5

where k →∞ and φ = (1 +√5)/2.
46 / 59



n-bonacci Sequence
DefinitionThe n-bonacci sequence {F (n)

k } is defined recursively as follows:
F (n)

k = F (n)
k−1 + ...+ F (n)

k−n,initial conditions are F0 = ... = Fn−2 = 0 и Fn−1 = 1.
ExampleFibonacci sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, ...
Tribonacci sequence:

0, 0, 1, 1, 2, 4, 7, 13, 24, ...
47 / 59



The Case of Z/m ∗ Z/m with Z/2 < Aut
Proposition
The number Sk of new words, appearing on the step k , equals

Sk = F (m−1)
k+m−2

when k ⩾ −(m − 2).
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The Case of Z/m ∗ Z/m with Z/2 < Aut
Proposition (M. K.)
For the group Z/m ∗ Z/m = ⟨a, b | am = bm = 1⟩, m ⩾ 3 with the
automorphim φ : a 7→ b we have

ξ[a,b](k ) ∼ rk+1
mr − 2(m − 1)

where k →∞ and r is the positive root of the polinomial
χ(λ) = λn − λn−1 − ...− 1. In particular, Gφ(Z/m ∗ Z/m) has the
polinomial growth if and only if m = 2
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The Case of (Z/2)∗s with Z/s < Aut
Proposition
For the group (Z/2)∗s = ⟨a1, ..., as | a21 = ... = a2

s = 1⟩ with the
automorphism ai 7→ ai+1 (indices move modulo s) we have the
s-valued group with the growth

ξ[a1,...,as ](k ) =
 (s − 1)k − 1

s − 2 + 1, s ⩾ 3
k + 1, s = 2

In particular, the growth is polynomial if and only if s = 2
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Z/3 ∗ Z/3 and Symbolic Dynamics

Λ
[a, b]

[a2, b2]

[a2b, b2a]

[a2ba, b2ab]

[a2b2, b2a2]

[ab, ba]

[aba, bab]

[aba2, bab2]

[abab, baba]

[ab2a, ba2b]

[ab2, ba2]

×a

×b

[aba2b, bab2a]

[ababa, babab]

[abab2, baba2]

[ab2ab, ba2ba]

[ab2a2, ba2b2]

[a2b2a, b2a2b]

[a2bab, b2aba]

[a2ba2, b2ab2]
[a2ba2b, b2ab2a]

[a2baba, b2abab]

[a2bab2, b2aba2]

[a2b2ab, b2a2ba]

[a2b2a2, b2a2b2]

[aba2ba, bab2ab]

[aba2b2, bab2a2]

[ababab, bababa]

[ababa2, babab2]

[abab2a, baba2b]

[ab2aba, ba2bab]

[ab2a2b, ba2b2a]

[ab2ab2, ba2ba2]

Fibonacci word

Thue–Morse sequence

×a

0 1 2 3 4 5 6
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Z/3 ∗ Z/3 and Symbolic Dynamics
An algorithm construction of a directed tree Γ, as verticeshaving the elements of 2-valued group G:

0 We start with the vertex, corresponding to the empty set Λ— the root of our tree
1 Add the vertex [a, b] adjacent to the root
2 Add two edges to the last vertex: each of them correspondsto an addition a letter (a or b) on the right hand side. Nowwe have two words of length 2: [a2, b2] and [ab, ba]
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Z/3 ∗ Z/3 and Symbolic Dynamics
DefinitionWe say that a word is cube-free (it doesn’t agree with thecommon use) if any word in the (natural) normal form of thegroup Z/3 ∗ Z/3 = ⟨a, b | a3 = b3 = 1⟩

4 On the step k we start with all cube-free words of length
k − 1 and add for each vertex 1 or 2 edges according to theprinciple:If a word ends with the first power of a letter then we willadd 2 edges, corresponding to the multiplications with aand bIf a word ends with the square of a letter then we will addexactly one edge, corresponding to the remaining letterThe edge, corresponding to the multiplication with a, lieshigher than the other one
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Properties of Γ
On the level k of the tree Γ top down, all cube-free wordsof length k place in lexicographic ascending order andtheir number is Fk+1. Using the binary notation a ↔ 0,
b↔ 1, this order coincides with the natural order on thebinary numbersIf one picts, down to top, the vertex having the number Fkon each k-level of Γ then the resulting vertex sequence willform the route ab(aab) in Γ
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Properties of Γ

Λ
[a, b]

[a2, b2]

[a2b, b2a]

[a2ba, b2ab]

[a2b2, b2a2]

[ab, ba]

[aba, bab]

[aba2, bab2]

[abab, baba]

[ab2a, ba2b]

[ab2, ba2]

×a

×b

[aba2b, bab2a]

[ababa, babab]

[abab2, baba2]

[ab2ab, ba2ba]

[ab2a2, ba2b2]

[a2b2a, b2a2b]

[a2bab, b2aba]

[a2ba2, b2ab2]

×a

×a

×a

×b

×a

×b

×a

×b

×a

0 1 2 3 4 5 6 7 8
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Properties of Γ
The latter can be formulated more generally in the followingProposition (M. K.)
For an infinite cube-free word Ψ, consider the factor sequence
{Θk} of the form

Ψaabaabaab... = Ψ(aab)
Θ1 = Ψ, Θ2 = Ψa, Θ3 = Ψaa, Θ4 = Ψaab, Θ5 = Ψaaba, ...

where the last letter of pre-period word Ψ differs from a. Then
the number Qk of cube-free words satisfies the recursive
equality, with words being grater or equal Θk lexicographically:

Qk = Qk−1 + Qk−2.
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Properties of Γ

Λ
[a, b]

[a2, b2]

[a2b, b2a]

[a2ba, b2ab]

[a2b2, b2a2]

[ab, ba]

[aba, bab]

[aba2, bab2]

[abab, baba]

[ab2a, ba2b]

[ab2, ba2]

×a

×b

[aba2b, bab2a]

[ababa, babab]

[abab2, baba2]

[ab2ab, ba2ba]

[ab2a2, ba2b2]

[a2b2a, b2a2b]

[a2bab, b2aba]

[a2ba2, b2ab2]
Fibonacci word

Thue–Morse sequence

×a

×a

×a

×b

×a

×b

×a

×b

×a

0 1 2 3 4 5 6 7 8
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Conclusion
This construction of the tree might give some fruitfulintuition about quasi-periodic wordsAt present, there are gaps in the n-valued-group growthstudyThe items above will be the subjects of further study
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Thank you!
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