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Introduction

e In different areas of research, multivalued products on
spaces appear

@ The literature on multivalued groups and their applications
is large and includes articles since XIX century mostly in
the context of hypergroups

e In 1971, S. P. Novikov and V. M. Buchstaber gave the
construction, predicted by characteristic classes. This
construction describes a multiplication, with a product of
any pair of elements being a non-ordered multiset of n
points
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Introduction

@ It led to the notion of n-valued groups which was given
axiomatically and developed by V. M. Buchstaber

@ At present, a number of authors are developing n-valued
(finite, discrete, topological or algebra geometric) group
theory together with applications in various areas of
Mathematics and Mathematical Physics
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Introduction

@ Since 1996, V. M. Buchstaber and A. P. Veselov and became
develop some applications of n-valued group theory to
discrete dynamical systems

e In 2010, V. Dragovi¢ showed the associativity equation for
2-valued group explains the Kovalevskaya top integrability
mechanism
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Introduction

We will talk about
@ Symbolic Dynamics
e Tiling theory
e Multivalued Group theory

@ their connections and some author’s results
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Combinatorics on Words Preliminaries

e Alphabet A is a finite set, consisting of letters
@ A* stands for the monoid of finite words in an alphabet A
e AY stands for the set of right infinite words

e A word w € A is periodic if it is of the form w = uwv... for
some u,v € A*

e A word w € A“ is aperiodic (or, quasi-periodic) if it is not
periodic

@ Factor is a finite continuous subword v in w = ...u...
@ Denote by |w| the length of a word w € A*
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Combinatorics on Words Preliminaries

@ Let A and B be alhabets. A morphism is a map F : A* — B*
satisfying
Flxy) = F(x) Fly)

for all words x,y € A%, i. e, F is a homomorphism of
monoids

@ A morphism is defined by the images F(a) of the letters
a€A
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Combinatorics on Words Preliminaries

@ In some cases, one can define a limit
a— F(a) - F(F(a)) - ... > F<(a)

@ It is easy to see that the word w = F*(a) will be a fixed
point, i. e, F(w) =w

8/59



Examples of Morphisms

Example (Fibonacci Morphism)

F:{0,1}* - {0,1}*, 0— 01, 1~ 0

The infinite Fibonacci word ® := F*(0) is

$ = 01001010010010100101001001010010...
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Examples of Morphisms

Example (Thue-Morse Morphism)

F:{0,1}* - {0,1}*, 0— 01, 1~ 10

The Thue-Morse sequence F*(0) is

I'=01101001100101101001011001101001...
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Examples of Morphisms

Example (Tribonacci Morphism)
F:A{a b, c} - {a,b,c}*

a — abc,
F : 3 b~ ac,

c— b

The infinite tribonacci word F*°(a) is

abcacbabcbacabcacbacabch...
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The Factor Complexity

@ The factor complexity of an infinity word w is the function
fw(n) defined as the number of its factors of length n

@ One can show that for an infinite word w there exists
C € N such that
fu(n) < C

for evey n € N
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The Factor Complexity

Theorem (M. Morse and G. Hedlund, 1940)

Let w be an aperiodic infinite word. Then for any n € N

fw(n) = n+1

In the case of equality f,(n) = n+ 1, a word w is called
Sturmian

Some easy properties:
e f,(n) <|A|” where A is an alphabet

@ f,(n) is non-decreasing function
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Once Again: The Fibonacci Word

@ Consider the Fibonacci word constructed above
¢d = 01001010010010100101001001010010010100...

@ There is another way to construct ¢
e Consider the following recursive sequence {®,} of finite
Fibonacci words

(l)k+1 = (l)k(|)1<—1r where (|)0 = O, (D1 =01
o {|®,|} is the Fibonacci sequence:
|Pi| = Fry2, Fry2 = Frpr + Fie, Fo=0, F1 =1

@ In this setting ® = lim®P,,
n

d, =010
d3 = 01001
d4 = 01001010
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The Fibonacci Word is Sturmian

@ It turns out that the Fibonacci word is Sturmian
o It follows from the geometric interpretation of Sturmian
words

Pl

1

>

y(x) = Yx, g =1/p, ¢ =(1+5)2
$5 = 0100101001001
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Some Properties of the Fibonacci Word

@ The factors 11 and 000 are absent in ®

@ The last two letters of a Fibonacci word are alternately 01
and 10

@ The nth digit of ® is

2+ [ng] = L(n+1)¢],

where ¢ = (1 +V/5)/2 is the golden rartio
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The Fibonacci Word and Quasi-Quasicrystals

Cut-and-projection method gives

A

7

o
-

e
d

e
e

/0

>

y(x) = Px + 52, Y =1/p, ¢ = (1 +V5)2

17159



Balanced Words

Definition

An infinity word w in the alphabet {a, b} is called balanced if
for any two factors u and v of the same length n

lula = [v]s] =1

where | — |, denotes the number of letters a (the Hamming
weight).

@ The Fibonacci word is an example of balanced word
& =01001010010010100101001001010010010100...

@ For the Thue-Morse word, however, it is not the case: see,
e. g, 00 and 11

I =01101001100101101001011001101001...
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Geometric Words

An infinite word in two-letter alphabet is called geometric if it
encodes intersections of a fixed line y = ax + p with vertical
and horizontal lines of integer lattice

o If o is rational the dynamics is periodic

o If a is irrational the one is qusi-periodic
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Sturmian Words are Geometric

For an infinite word in 2-letter alphabet the following
conditions are equivalent

® fu(n)=n+1

@ w is aperiodic and balanced
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Markov's Result

Theorem (A. A. Markov, 1882)

Let a =[0; a1, a3, ...] be the continued fraction expansion,
a € (0,1). Then the word S(a) encoded by a line y = ax can be
written as follows

S(a) = lilin Sik(a)

where

S =S% S

with the initial conditions S_41 = b u Sy = a. The letters a and b
correspond to vertical and horizontal intersections respectively

For the word length sequence {|Sk|} we have |S_4| =1,
|So| =1 and
|Sk| = ak|Sk-a| + [Sk—2]
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Markov's Result

Example

e Consider the line y = (yx where ¢y =1/, ¢ = (1 +V/5)/2

1
1

Y =
1+

L
.

@ In this case, S, = S5,.15,,_», — the Fibonacct word
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Tilings

Definition

A simple tiling of RY:
@ There are only a finite number of tile types, up to
translation

e Each tile is a polytope

@ Tiles meet full-facet to full-facet
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The e-closeness

We say that tilings 7y and T, are e-close if they are agree on a
ball of radius 1/ around the origin, up to translation of size €
or less

T —1/e 1/e
{ 9 3
\ R J
Ty _>_<_
..... { ¥ )
\ J
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Tiling Spaces

Definition

@ The orbit of a tiling T is the set O(T) := {T — x | x € R}
of translates of T

@ A tiling space () is a set that is closed under translation,
and complete in the tiling metric

@ The hull Q7 of a tiling T is the closure of O(T) with respect
to the e-closure property
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Tiling Spaces

Example

@ Consider a simple 1-dimensional tilling Ty with just one
kind of tile. Suppose its length is 1 and its color is blue

@ Obviously, To = To — 1. So, Qy, is a circle
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Tiling Spaces

Example

@ Consider an 1-dimensional tilling T; with one red tile of
length 2 and other blue tiles of length 1

@ Any tiling with one red tile is in O(T;), and hence in Q7
@ Tilings with no red tiles are also in Qr, by simple reasons

@ So, O, looks like the circle Qr, and the line O(T;) with
both ends of the line asymptotically approaching the circle
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Tiling Spaces
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Tiling Spaces

If T is a simple tiling then Q7 is compact

e For a tiling T one can approximate the space Q7 via CW
complexes [, from the Gdhler’s construction

@ There is a sequence of forgetful maps f,: [',.1 — [',. The
space [, knows about surrounding n layers in some sence

@ Hence, one can form an inverse limit and it will
homeomorphic to Qr

QT = mrn

@ In the case of substitution tilings, it is more convenient to
use the Anderson-Putnam construction of '] s
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Topological Invariants of Tiling Spaces

@ ()7 has one connected component, but uncountably many
path-component

e Each path component in a tiling space is an orbit under RY.
Such an orbit of an aperiodic tiling is contractible, so
7,(Qr) = 0 and H,(Q,; A) = 0 for n > 0, A is abelian

@ Cech cohomology does better

M (u(._n r,,) = lim F(C,) = L H(T)

H' of the Fibonacci tiling space is Z ® @Z, ¢ = (1 +/5)/2
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Prodefinition of n-valued Groups

A hypergroup is a promonoidal category structure on a discrete
poset X, whose promultiplication X x X — G(X) takes values in
the 2-category of non-empty groupoids, with some additional
groupal properties

Recall, a promonoidal category is a category € together with
@ A profunctor (promultiplication) € x € -+ C
@ A profunctor (prounit) /: 1 -+ C
@ Associativity Po (P x 1) Z Po (1 x P)
@ Unit isomorphisms Po(/ x 1) =1, and Po (1 x /) =1
A fancy arrow A -+ B means a functor B x A — Set. The
composition of F : A— B and G : B -+ C is defined to be

acA
(GoF)(c,a) = / F(b, a) ® G(c, b)
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Symmetric Powers of a Space

e For a topological space X, let (X)" denote its n-fold
symmetric power, i. e., (X)" = X"/Z, where the symmetric
group L, acts by permuting the coordinates

@ An element of (X)" is called an n-subset of X or just an
n-set. It is a subset with multiplicities of total cardinality n

Example
The spaces (C)” = C"/Z,, and C" are identified using the map
S : C" — C" whose components are given by

(z1,22,...,20) = 021,22, ...,2,), 1 <1 <,

where 0, is the r-th elementary symmetric polynomial
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n-valued Group Structure

An n-valued multiplication on X is a map
e XXX = (X)"px,y)=xxy=I[z1,22,..., 2], zZx = (x * y)k
e Associativity. The n’-sets
[x % (y*2)1, x*%(y*2)2,...,x*x(yx*2),]
[(x*y)r*z, (x*ky)2*xz,...,(Xx*y),* 2]

are equal for all x,y,z € X

@ Unit. e € X such that exx = xxe =[x, x,...,x| for all
xe X

@ /nverse. A map inv: X — X such that

e € inv(x) * x and e € x xinv(x) for all x € X

The map p defines an n-valued group structure on X
if it is associative, has a unit and an inverse
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Example: 2-valued Group Structure on Z,

e Consider the semigroup of nonnegative integers Z.,

@ Define the multiplication y: Z, x Z, — (Z,)? by the
formula x * y =[x + y, [x — y|]

@ [he unit: e=0
@ [he inverse: inv(x) = x.

@ [he associativity: one has to verify that the 4-subsets of Z.

[x +y+ 2z,

x—y—z|x+|y—2z||x—ly—zl]

’

and

[x +y+ 2z,

x+y—z||x—yl+2z|x—y|l—Zz|]

’

are equal for all nonnegative integers x, y, z
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Example: n-valued Group Structure on C

@ Define the multiplication y: C x C — (C)" by the formula

xxy=[Vx+evy)", 1<r<n)]

where € € Z, is a primitive nth root of unity
@ The unit: e=0
@ [he inverse: inv(x) = (—=1)"x

@ The multiplication is described by the polynomial equations

n

palx,y, z) = |—| (z — (x % _L/)k) =0
k=1
For instance,

pr=z—x—vy, p2=(z+x+y)?’—4xy+yz+ zx),
ps = (z—x—y)’ = 27xyz
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Homomorphisms of n-valued Groups

Amap f: X — Y is called a homomorphism of n-valued groups if

()] f(@x) = €y
o f(invx(x)) = tnvy(f(x)) for all x € X
o uy(f(x), f(y)) = (f)"ux(x, y) for all x,y € X

So, the class of all n-valued groups forms a category
MultValGrp
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Reducible n-valued Groups

@ For each m € N, an n-valued group on X, with some
multiplication p, can be regarded as an mn-valued group
by using as the multiplication the composition

X x X 5 (Xx)" or (X)™, where D is diagonal

An n-valued group on X is called reducible if there is an
isomorphism f : X — Y where Y is an n-valued group with a

multiplication p, = p’, n = mk
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Kernels and Images

Lemma
Let f : X — Y be a homomorphism of n-valued groups. Then
e ker(f) = {x € X | f(x) = ey} is an n-valued group
o f(x1) = f(x2) & (f)"(zx1) = (f)"(2x2) for all z € ker(f)
@ Suppose that the map inv : X — X is uniquely defined.
Then ker(f) = {e} if and only if any equality f(x;) = f(x2)
implies x; = x,

o Im(f)={y €Y |y=f(x),x € X} is an n-valued group
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Coset Groups

@ Let G be a (1-valued) group with the multiplication ti, the
unit eg, and invg(u) = u™’

o Let A— AutG be a finite group of order n

@ Denote by X the quotient space G/A of G, and denote by
7 : G — X the quotient map

@ Define the n-valued multiplication p: X x X — (X)" by the
formula

p(x, y) = [(to(u, v9) | a € A

where u € 77 '(x), v € 77 '(y) and v is the image of the
actonofae Aonve G

The multiplication p defines some n-valued coset group
structure (G, A) with the unit ex = mt(eg) and the non-ambiguity
defined map inv(u) = m(u~") where m(u) = x
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Coset Groups

Example

e Consider G = {a,b | a*> = b* = e}

@ The interchange of a and b is an element of order 2 of AutG

@ Then we have on the set X = G/A = {u2,, U1}, N >0
where

tr, = [(ab)”, (ba)"], uznsr = [a(ba)", b(ab)”
@ The multiplication:
Uy * Up = [Ugo, Ujk—g|]

@ Thus, X is isomorphic to the 2-valued group on Z,
constructed above
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n-valued Dynamics

An n-valued dynamics T on a space Yisamap T :Y — (Y)"

o If Y is a state space then the n-valued dynamics T defines
possible states T(y) =[uy1, ..., y,] at the moment (t + 1) as
a state function of y at the moment ¢t

Example

@ Consider
F(x,y) = bo(x)y" + bi(x)y™" + -+ + by(x), x,y € C.
@ The equation F(x, y) = 0 defines an n-valued dynamics

TC—(C)" : T(x)=[yr,-- - Y]

where [y1, ..., y,] — n-set of roots of F(x,y) =0
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n-valued Growth Function

@ Let T: Y — (Y)" be an n-valued dynamics. For any y € Y
define the n-valued growth function &,: N — N where &,(k)
— the number of different points in the set T*(y)

Characterize such n-valued dynamics T that functions &,(k)
have polynomial growth for any y € Y

polynomial growth exponential growth
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n-valued Actions

An action of n-valued group X on a space Y is defined by the
map

P XxY = (V)" el y)=x-y=[yr ..., yn

such that

e for any x;,x; € X and y € Y the following n’-sets coincide:
x1 (X2 y)=[x1-y1, ..., x1-Ypland (xix2)-y=1[z1-y,..., Zy Y]

where x; -y =[y1, ..., Yol v xixa =1z, ..., Zn)

eec-y=J[y,...,ylforanyyeY
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n-valued Cyclic Dynamics

An n-valued group X := (x) is called cyclic if it is generated by
the only element x € X

Consider n-valued dynamics T: Y — (Y)” with X = (a). The
generator a is called the generator of the cyclic dynamics T

Theorem (A. A. Gaifullin, P. V. Yagodovskii, 2007)

An n-valued dynamics T has a generator a € X if and only if
there exists such a dynamics T~': Y — (Y)" that for any y,,
y> € Y the multiplicity of y, in T(y1) equals the multiplicity of
yi in T_1(y2)
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n-valued Cyclic Group Growth Problem

e Let X = (a) be a cyclic n-valued group
@ Then there is the left action of X on itself

T:X—>X)", T(x)=a-x

@ Recall &, (k) is a number of different elements in TX(a)

Denote by G,(G) the n-valued group obtained from the
construction above for some ordinary group G and some
automorphism group element ¢

45/59



The Case of Z/3 x Z/3 with Z/2 < Aut

Proposition

For the group Z/3 % Z/3 = (a,b | a®> = b’ = 1) and the
automorphism ¢ : a— b the corresponding 2-valued group
Gy (Z[3 * Z[3) has the growth function

k+3 1_\/5 k+3 1
— > —1.

1 14+v5
Slab)(k) = Fryz —1 = 7 ( 5

In particular, the growth is exponential:

k+3

Slab)(k) ~ 7

where k — oo and ¢ = (1 + V/5)/2.
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n-bonacci Sequence
Definition

The n-bonacci sequence {F,((”)} is defined recursively as follows:

FP=F" + .+ Y,

initial conditions are Fo=...=F, >, =0un F,_1 = 1.

Example

Fibonacci sequence:
0,1,1,2,3,5,8,13,21, ...
Tribonacci sequence:

0,0,1,1,2,4,7,13,24, ...
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The Case of Z/m x Z/m with Z/2 < Aut

Proposition

The number Sy of new words, appearing on the step k, equals
_ (m=1)
Sk - Fk+m—2

when k > —(m — 2).
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The Case of Z/m x Z/m with Z/2 < Aut

Proposition (M. K.
For the group ZIm*Z/m = (a,b | a” = b™ = 1), m > 3 with the
automorphim ¢ : a— b we have

I_k+1

a k) ~
Sfasi(k) mr —2(m—1)

where k — oo and r is the positive root of the polinomial
X(A) = A" — AT — . —1.1In particular, G4(Z/m * Z[m) has the
polinomial growth if and only if m = 2
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The Case of (Z/2)* with Z/s < Aut

Proposition

For the group (Z/2)* = (a4, ...,as | a2 = ... = a? = 1) with the
automorphism a; — a;1 (indices move modulo s) we have the
s-valued group with the growth

(s—1) =1

5[01 ..... as](k) — s—2
k+1, s=2

+1, s>3

In particular, the growth is polynomial if and only if s = 2
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Z|3 x Z|3 and Symbolic Dynamics

(a%ba?, tRala
[a%ba?, bab?
Fibonacci word R
ThueMorse sequence
[a%ba, bab]
(bat bl A ©baba Pabat]
[a%bab?, aba?]
a%b, a]

[a?b2a?, b2a??]
[a2.87] [a%b%a; b2 a?D) 232 1 12 2
a*ab, Ba*ba

a2, b%a?]

[aba?b, ba ."]<: abaZba, bab?ab)
[aba??, bab?®

aba?, bab?]

A xa la.b]

aba, bal

xb [ababa, batial (ababa?, babal?;

[ababab, bababa)

[ab, ba] o b
labab, baba abab?, baba?]

T alabata, babo
[ab?, ba?]
— [abab, ba’t%a]

ab%a?, ba2b?]

ab?a, bah]

ab?aba, ba*bab]

[abab, ba?ba) [abal?, ba*ba?)
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Z|3 x Z|3 and Symbolic Dynamics

An algorithm construction of a directed tree [, as vertices
having the elements of 2-valued group G:

O We start with the vertex, corresponding to the empty set A
— the root of our tree

@ Add the vertex [a, b] adjacent to the root

@ Add two edges to the last vertex: each of them corresponds
to an addition a letter (a or b) on the right hand side. Now
we have two words of length 2: [a?, b%] and [ab, ba]
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Z|3 x Z|3 and Symbolic Dynamics

We say that a word is cube-free (it doesn’t agree with the
common use) if any word in the (natural) normal form of the
group Z/3% Z/3 ={a,b | a®> = b3 =1)

@ On the step k we start with all cube-free words of length
k —1 and add for each vertex 1 or 2 edges according to the
principle:

o If a word ends with the first power of a letter then we will
add 2 edges, corresponding to the multiplications with a
and b

o If a word ends with the square of a letter then we will add
exactly one edge, corresponding to the remaining letter

e The edge, corresponding to the multiplication with a, lies
higher than the other one
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Properties of I

@ On the level k of the tree ' top down, all cube-free words
of length k place in lexicographic ascending order and
their number is F.1. Using the binary notation a < 0,

b < 1, this order coincides with the natural order on the
binary numbers

o If one picts, down to top, the vertex having the number Fj
on each k-level of ' then the resulting vertex sequence will
form the route ab(aab) in [
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Properties of I

[a%ba?, B2ab?] > —
a%ba, bal)]
a?bab; Paba)
- r—
&%, Fa] k<i::
xb —
2, 1?) [0 12a2)] ~<:::
0%, 1%a?)]
e (aba?, baka] ‘éiij
X =
v oy Jaba?, bal?
1)
labia, bab b ‘4:ii
a\ ! [ababa, batiab] SR
[ab. ba
[abab, baby
X %
[abiat?, baba?®
[ab?, ba?] aba, ba®] 4 xb \<ii:
[aba, ba®
x
[ab%ab, ba*ba] “ <<:::
0 1 2 3 4 5 6 7 s
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Properties of I

The latter can be formulated more generally in the following
Proposition (M. K.

For an infinite cube-free word W, consider the factor sequence
{O} of the form

Waabaabaab... = W(aab)

0,=VY, 0, =Wa, 635 =Waa, 04 = WYaab, ©5 = Waaba, ...

where the last letter of pre-period word W differs from a. Then
the number Qy of cube-free words satisfies the recursive
equality, with words being grater or equal © lexicographically:

Ok = Ok—1 + Ok_s.
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Properties of I

[a%ba?, B2ab?] > —
Fibonacci word
Thue-Morse sequence ——
[a%ba, bab]
42bab; Paba]
- —
&%, Fa]
Xt
@, [@Fa} Pa0) *<:::
(@8,
e (aba?, baka] ‘ﬁiii
xa
v i oy aba?, bat?]
1]
(abia, bab :
o\ ! ababa, babiab] x
[ab, bl
[abab, bab
= %
[ww!mml“’/’A
ab?, ba?] pbﬁmﬁ#]&\ilﬂ \<:::
ata, ba?
x
[ab2ab, bi?ba] =
0 1 3 3 1 5 6 7 3
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Conclusion

@ This construction of the tree might give some fruitful
intuition about quasi-periodic words

o At present, there are gaps in the n-valued-group growth
study

@ The items above will be the subjects of further study
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Thank you!
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