
Существенное множество:
свойства и практическое применение

Андрей Субочев, Ангелина Юдина

Международный центр анализа и выбора решений (DeCAn Lab)

Национальный исследовательский университет

«Высшая школа экономики»

Higher School of Economics, Moscow, 2021

www.hse.ru



Higher School of Economics, Moscow, 2021

Alternatives, comparisons, choices

X – the general set of alternatives.

A – the feasible set of alternatives: A  X  A  |A|<.  The feasible set is a variable.

R – results of binary comparisons, R  XX.

R is presumed to be complete:  x  X,  y  X, (x, y)  R  (y, x)  R.

R|A=RAA – restriction of R onto A.

(A, R|A) – abstract game or weak tournament. 

P – asymmetric part of R, P  R: (x, y)  P ⟺((x, y)  R  (y, x)  R).

If P|A is complete,  x  X,  y  X  y ≠ x, (x, y)  P  (y, x)  P, then

(A, R|A) – (proper) tournament.
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Tournament solutions

A tournament solution S is a choice correspondence S(A, R): 2X\  2XX → 2X

that has the following properties:

0. Locality: S(A, R)=S(R|A)  A

1. Nonemptiness:  A,  R,  S(R|A);

2. Neutrality: permutation of alternatives’ names and choice commute;

3. Condorcet consistency: MAX(R|A)  S(R|A) ∧ MAX(R|A)={w} ⇒ S(R|A) ={w}.

Tournament matrix T

x1 x2 x3 x4 x5

x1 0.5 1 0 0.5 0

x2 0 0.5 1 1 0

x3 1 0 0.5 1 0

x4 0.5 0 0 0.5 1

x5 1 1 1 0 0.5

x1

x5

x4

x3

x2

Tournament digraph



Higher School of Economics, Moscow, 2021

Tournament game (TG)

TG is a two-player zero-sum symmetric non-cooperative game on a tournament R|A

Set of players N={1, 2}. Sets of pure strategies S1=S2=A. Payment functions:

v1(x1, x2)=1 ⟺ x1Px2, v1(x1, x2)=-1 ⟺ x2Px1, v1(x1, x2)=0 otherwise, v2(x1, x2) = -v1(x1, x2).

TG has Nash equilibria in pure strategies ⟺ MAX(R|A).

A mixed strategy in TG is a lottery p on A. Then v1(p1, p2) = p1Gp2, 

where matrix G is obtained from the tournament matrix T: gij = 2tij-1. 

(v1(p1, p2)+1)/2=p1Tp2 is the probability that player 1 will win the game.

Since G is antisymmetric, formula p1Gp2 defines a binary relation on the set of lotteries:

p1Gp2 ≥ 0 ⟺ p1≿ p1

If p0Gp ≥ 0 for all p then p0 is a maximal lottery.

p1 and p2 are maximal lotteries ⟺ (p1, p2) is a Nash equilibrium of TG
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Bipartisan set (BP) and Essential set (ES)

Theorem: 

1. The set of maximal lotteries is always nonempty.

2. If a tournament (A, R|A) is proper then there is just one maximal lottery.

Bipartisan set BP (Laffond, Laslier, Le Breton, 1993)

of a (proper) tournament (A, R|A) is the support of the maximal lottery.

Essential set E (Dutta, Laslier, 1999) 

of a (weak) tournament (A, R|A) is the union of supports of all maximal lotteries.
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Example

Tournament digraph – the Condorcet cycle.

A={x1, x2, x3}, R|A={(x1, x2), (x1, x2), (x1, x2)}

Tournament matrix T

x1 x2 x3

x

1
0.5 1 0

x

2
0 0.5 1

x

3
1 0 0.5

x1 (“Paper”)

x3 (“Scissors’)

x2 (“Stone”)

x1 x2 x3

x

1
0 1 -1

x

2
-1 0 1

x

3
1 -1 0Matrix G

MAX(R|A)= no Nash equilibrium in pure strategies.

Maximal lottery pmax= (1/3, 1/3, 1/3).

Bipartisan set BP = A.

Note that pmax is an eigenvector of G with the eigenvalue 0, therefore pGpmax=0 for all p.

Tournament game – “Paper, Scissors, Stone”.



Higher School of Economics, Moscow, 2021

Properties

• Monotonicity (monotonicity w.r.t. results of binary comparisons):

∀R1,R2  X 2, ∀A  X, ∀x∈S(R1|A),

(R1|A\{x}=R2|A\{x}∧∀y∈A\{x}, (xP1y ⇒ xP2y)∧(xR1y ⇒ xR2y)) ⇒ x∈S(R2|A).

• Stability

For all R X 2 and for all A, B  X such that A∩B the following holds:

S(A, R)=S(B, R)=C ⟺ S(A∪B, R)=C.

• Computational simplicity: There is a polynomial algorithm for computing S.
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Properties related to stability

Stability: S(A, R)=S(B, R)=C ⟺ S(A∪B, R)=C.

• α-property (generalized Nash independence of irrelevant alternatives,

independence of outcasts, strong superset property):

S(A, R)=S(B, R)=C  S(A∪B, R)=C.

• γ-property:

S(A, R)=S(B, R)=C  S(A∪B, R)=C.

• Idempotency: A, S(S(A))=S(A).

• The Aizerman-Aleskerov condition: A, B, S(A)BA S(B)S(A).

• Independence of irrelevant results (independence of losers):
∀R1,R2⊆X 2, ∀A⊆X, (∀x∈S(R1|A),∀y∈A, ((xR1y ⟺xR2y) ∧ (yR1x ⟺yR2x)) ⇒ S(R1|A)=S(R2|A).

α-property ⟺ Idempotency ∧ the Aizerman-Aleskerov condition

α-property  Independence of irrelevant results 
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Axiomatic analysis

BP E

Monotonicity Yes Yes
α-property (outcast) Yes Yes
Idempotence Yes Yes
Aizerman-Aleskerov property Yes Yes
Independence of irrelevant results Yes Yes
γ-property Yes Yes
Stability Yes Yes
Computational simplicity Yes Yes
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The covering relations and the uncovered sets

The covering relations (Fishburn, 1977; Miller, 1980)

The covering relation C  A 2, is a strengthening of P|A:

1. The Miller covering CM: xCMy ⟺ xPy ∧ P -1(y)P -1(x).

2. The Fishburn covering   CF: xCFy ⟺ xPy ∧ P(x)  P(y).

3. The McKelvey covering CMcK:xCMcKy ⟺ xPy ∧ P -1(y)P -1(x) ∧ P(x)P(y).

The set of all alternatives that are not covered in A by any alternative is called 

the uncovered set of a feasible set A. 

The Miller, Fishburn and McKelvey uncovered sets will be denoted 

UCM, UCF and UCMcK, correspondingly.



Higher School of Economics, Moscow, 2021

Minimal externally stable sets

A nonempty subset B of A is called

P-dominating if  x  A,  y  B: yPx

P-externally stable if  x  A\B,  y  B: yPx

R-externally stable if  x  A\B,  y  B: yRx

Self-protecting if  x  A, ( y  B: yPx)  ( y  B, yRx)

Weakly stable if  x  A\B, ( y  B: yPx)  ( y  B, yRx)

Tournament solutions: the union of all minimal

P-dominating sets D (Duggan 2013, Subochev 2016)

P-externally stable sets ES (Wuffl, Feld, Owen & Grofman 1989, Subochev 2008) 

R-externally stable sets RES (Aleskerov & Subochev 2009, 2013) 

Self-protecting sets SP (Roth 1976, Subochev 2020)

Weakly stable sets WS (Aleskerov & Kurbanov 1999)
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Relations of E to other solutions

In proper tournaments, BP  UC  ES, also BP  D  ES.

In weak tournaments, 

1. E  UCMcK (Dutta, Laslier, 1999)

2. E  UCM ∧ UCM  E, it remains to be proven that E∩UCM always holds.

3. E  UCF ∧ UCF  E, it remains to be proven that E∩UCM always holds.

4. E  ES ∧ ES  E, but E∩ES always holds.

5. E  D ∧ D  E, but E∩D always holds.

6. RES  E and E∩RES always holds.

7. E  SP ∧ SP  E, but E∩SP always holds.

8. E  WS ∧ WS  E, but E∩WS always holds.
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Ranking based on a tournament solution

Suppose, we are interested in ranking alternatives from A.

Then we may use the following procedure:

• Tournament solution S(A, R) choses the set B(1) of the best 

alternatives in A, B(1)=S(A, R).

• Exclude these alternatives from A and apply S to the rest. 

B(2)=S(A\B(1), R)=S(A\S(A, R), R) will be the set of the 

second-best alternatives in A.

• By repeated exclusion of the best alternatives determined 

at each step of the procedure the set А is separated into 

groups В(r)=S(A\(B(r-1)B(r-2)...B(2)B(1)), R), and that is the 

ranking.

• Let r denote the rank of x in this ranking.

B(1)

B(r)

B(2)

…
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Bibliometric data

Indicator Database Year

Publication 

window, 

years

Weighted
Size-

dependent

impact factor WoS/JCR 2011 2 No No

5-year impact

factor
WoS/JCR 2011 5 No No

immediacy index WoS/JCR 2011 1 No No

article influence WoS/JCR 2011 5 Yes No

Hirsch index WoS

2007–2011 

(papers and 

citations)

5 No Yes

SNIP Scopus 2011 3 No No

SJR Scopus 2011 3 Yes No

Economics: 212 journals

Management: 93

Political Science: 99
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Severity of Condorcet paradox evaluated

3-step 

cycles

4-step 

cycles

5-step 

cycles

Tied

pairs

All 

pairs

Economics 2446 22427 226103 197 22366

Management 203 787 3254 33 4278

Political Science 149 430 1344 73 4851

Numbers of 3-, 4- and 5-step P-cycles and ties
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Discrimination

Number 

of journals
UCM ES E

Management 93 42 33 49

Political Science 99 42 36 45

Total numbers of ranks in rankings based on sorting
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Formal analysis of correlations

Kendall b (economic journals)

IF 5-IF Immediacy AI Hirsch SNIP SJR

5-year IF
0.83

0

1.000
0.510 0.725 0.702 0.726 0.741

Markovia

n
0.819 0.891 0.560

0.76

9
0.729 0.750 0.775

The Markovian ranking majority-dominates the ranking based on 5-IF

ERGO

The Markovian ranking represents the set of seven single-indicator-

based rankings better than the ranking based of 5-year impact factor
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The rankings of rankings (based on b)

ra
n

k Managemen

t
Political Science

1 E ES

2 ES UCM

3 UCM Copeland 3

4 Copeland 2 Copeland 2

5 Copeland 3 E

6 Markovian Markovian

7 5-IF 5-IF

8 SNIP Hirsch

9 Hirsch

AI / IF / SJR10 AI

11 SJR

12 IF SNIP

13 Immediacy Immediacy
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The rankings of rankings

(based on the share of strictly coinciding pairs)

ra
n

k Managemen

t
Political Science

1 Copeland 3 Copeland 2 /

Copeland 3 /

Markovian

2 Copeland 2

3 Markovian

4 E E

5 UCM UCM

6 5-IF 5-IF

7 ES ES

8 AI SNIP

9 IF AI

10 SNIP

IF / Hirsch / SJR11 SJR

12 Hirsch

13 Immediacy Immediacy
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