Существенное множество: свойства и практическое применение

Андрей Субочев, Ангелина Юдина
Международный центр анализа и выбора решений (DeCAn Lab)
Национальный исследовательский университет
«Высшая школа экономики»

Alternatives, comparisons, choices

X - the general set of alternatives.
A - the feasible set of alternatives: $A \subseteq X \wedge A \neq \varnothing \wedge|A|<\infty$. The feasible set is a variable.
R - results of binary comparisons, $R \subseteq X \times X$.
R is presumed to be complete: $\forall x \in X, \forall y \in X,(x, y) \in R \vee(y, x) \in R$.
$\left.R\right|_{A}=R \cap A \times A$ - restriction of R onto A.
$\left(A,\left.R\right|_{A}\right)$ - abstract game or weak tournament.
P - asymmetric part of $R, P \subseteq R:(x, y) \in P \Leftrightarrow((x, y) \in R \wedge(y, x) \notin R)$.
If $\left.P\right|_{A}$ is complete, $\forall x \in X, \forall y \in X \wedge y \neq x,(x, y) \in P \vee(y, x) \in P$, then
$\left(A,\left.R\right|_{A}\right)$ - (proper) tournament.

Tournament solutions

A tournament solution S is a choice correspondence $S(A, R): 2^{X} \backslash \varnothing \times 2^{X \times X} \rightarrow 2^{X}$ that has the following properties:
0. Locality: $S(A, R)=S\left(\left.R\right|_{A}\right) \subseteq A$

1. Nonemptiness: $\forall A, \forall R, S\left(\left.R\right|_{A}\right) \neq \varnothing$;
2. Neutrality: permutation of alternatives' names and choice commute;
3. Condorcet consistency: $\operatorname{MAX}\left(\left.R\right|_{A}\right) \subseteq S\left(\left.R\right|_{A}\right) \wedge M A X\left(\left.R\right|_{A}\right)=\{w\} \Rightarrow S\left(\left.R\right|_{A}\right)=\{w\}$.

	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{x}_{\mathbf{4}}$	$\boldsymbol{x}_{\mathbf{5}}$
$\boldsymbol{x}_{\mathbf{1}}$	0.5	1	0	0.5	0
$\boldsymbol{x}_{\mathbf{2}}$	0	0.5	1	1	0
$\boldsymbol{x}_{\mathbf{3}}$	1	0	0.5	1	0
$\boldsymbol{x}_{\mathbf{4}}$	0.5	0	0	0.5	1
$\boldsymbol{x}_{\mathbf{5}}$	1	1	1	0	0.5

Tournament matrix \mathbf{T}

Tournament digraph

Tournament game (TG)

TG is a two-player zero-sum symmetric non-cooperative game on a tournament $\left.R\right|_{A}$ Set of players $N=\{1,2\}$. Sets of pure strategies $S_{1}=S_{2}=A$. Payment functions: $v_{1}\left(x_{1}, x_{2}\right)=1 \Leftrightarrow x_{1} P x_{2}, v_{1}\left(x_{1}, x_{2}\right)=-1 \Leftrightarrow x_{2} P x_{1}, v_{1}\left(x_{1}, x_{2}\right)=0$ otherwise, $v_{2}\left(x_{1}, x_{2}\right)=-v_{1}\left(x_{1}, x_{2}\right)$.

TG has Nash equilibria in pure strategies $\Leftrightarrow \operatorname{MAX}\left(\left.R\right|_{A}\right) \neq \varnothing$.
A mixed strategy in TG is a lottery \mathbf{p} on A. Then $v_{1}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)=\mathbf{p}_{1} \mathbf{G} \mathbf{p}_{2}$
where matrix \mathbf{G} is obtained from the tournament matrix $\mathbf{T}: g_{i j}=2 t_{i j}-1$.
$\left(v_{1}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)+1\right) / 2=\mathbf{p}_{1} \mathbf{T} \mathbf{p}_{2}$ is the probability that player 1 will win the game.
Since \mathbf{G} is antisymmetric, formula $\mathbf{p}_{1} \mathbf{G} \mathbf{p}_{2}$ defines a binary relation on the set of lotteries:

$$
\mathbf{p}_{1} \mathbf{G} \mathbf{p}_{2} \geq 0 \Leftrightarrow \mathbf{p}_{1} \succsim \mathbf{p}_{1}
$$

If $\mathbf{p}_{0} \mathbf{G p} \geq 0$ for all \mathbf{p} then \mathbf{p}_{0} is a maximal lottery.
\mathbf{p}_{1} and \mathbf{p}_{2} are maximal lotteries $\Leftrightarrow\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)$ is a Nash equilibrium of TG

Bipartisan set (BP) and Essential set (ES)

Theorem:

1. The set of maximal lotteries is always nonempty.
2. If a tournament $\left(A,\left.R\right|_{A}\right)$ is proper then there is just one maximal lottery.

Bipartisan set BP (Laffond, Laslier, Le Breton, 1993)
of a (proper) tournament $\left(A,\left.R\right|_{A}\right)$ is the support of the maximal lottery.

Essential set E (Dutta, Laslier, 1999)
of a (weak) tournament $\left(A,\left.R\right|_{A}\right)$ is the union of supports of all maximal lotteries.

Example

Tournament digraph - the Condorcet cycle.
$A=\left\{x_{1}, x_{2}, x_{3}\right\},\left.R\right|_{A}=\left\{\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right)\right\}$

	X_{1}	x_{2}	x_{3}
\boldsymbol{x}	0.5	1	0
${ }^{1}$	0	0.5	1
${ }^{\boldsymbol{x}}$	harne	It	05

	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$
\boldsymbol{x}	0	1	-1
\boldsymbol{x}	-1	0	1
\boldsymbol{x}	-1	0	
\boldsymbol{x}	Matr	- -d	0

Tournament game - "Paper, Scissors, Stone". $\operatorname{MAX}\left(\left.R\right|_{A}\right)=\varnothing \Rightarrow$ no Nash equilibrium in pure strategies.

Maximal lottery $\mathbf{p}_{\max }=(1 / 3,1 / 3,1 / 3)$.
Bipartisan set $B P=A$.
Note that $\mathbf{p}_{\text {max }}$ is an eigenvector of \mathbf{G} with the eigenvalue 0 , therefore $\mathbf{p} \mathbf{G p}_{\max }=0$ for all \mathbf{p}.

Properties

- Monotonicity (monotonicity w.r.t. results of binary comparisons):
$\forall R_{1}, R_{2} \subseteq X^{2}, \forall A \subseteq X, \forall x \in S\left(\left.R_{1}\right|_{A}\right)$,
$\left(\left.R_{1}\right|_{A\{\{ \}\}}=\left.R_{2}\right|_{A\{\{x\}} \wedge \forall y \in A \backslash\{x\},\left(x P_{1} y \Rightarrow x P_{2} y\right) \wedge\left(x R_{1} y \Rightarrow x R_{2} y\right)\right) \Rightarrow x \in S\left(\left.R_{2}\right|_{A}\right)$.

- Stability

For all $R \subseteq X^{2}$ and for all $A, B \subseteq X$ such that $A \cap B \neq \varnothing$ the following holds:

$$
S(A, R)=S(B, R)=C \Leftrightarrow S(A \cup B, R)=C .
$$

- Computational simplicity: There is a polynomial algorithm for computing S.

Properties related to stability

Stability: $S(A, R)=S(B, R)=C \Leftrightarrow S(A \cup B, R)=C$.

- a-property (generalized Nash independence of irrelevant alternatives, independence of outcasts, strong superset property):

$$
S(A, R)=S(B, R)=C \Leftarrow S(A \cup B, R)=C .
$$

- γ-property:

$$
S(A, R)=S(B, R)=C \Rightarrow S(A \cup B, R)=C .
$$

- Idempotency: $\forall A, S(S(A))=S(A)$.
- The Aizerman-Aleskerov condition: $\forall A, \forall B, S(A) \subseteq B \subseteq A \Rightarrow S(B) \subseteq S(A)$.
- Independence of irrelevant results (independence of losers):
$\forall R_{1}, R_{2} \subseteq X^{2}, \forall A \subseteq X,\left(\forall x \in S\left(\left.R_{1}\right|_{A}\right), \forall y \in A,\left(\left(x R_{1} y \Leftrightarrow x R_{2} y\right) \wedge\left(y R_{1} x \Leftrightarrow y R_{2} x\right)\right) \Rightarrow S\left(\left.R_{1}\right|_{A}\right)=S\left(\left.R_{2}\right|_{A}\right)\right.$.
α-property \Leftrightarrow Idempotency \wedge the Aizerman-Aleskerov condition α-property \Rightarrow Independence of irrelevant results

Axiomatic analysis

	$B P$	E
Monotonicity	Yes	Yes
α-property (outcast)	Yes	Yes
Idempotence	Yes	Yes
Aizerman-Aleskerov property	Yes	Yes
Independence of irrelevant results	Yes	Yes
γ-property	Yes	Yes
Stability	Yes	Yes
Computational simplicity	Yes	Yes

The covering relations and the uncovered sets

The covering relations (Fishburn, 1977; Miller, 1980)
The covering relation $C \subseteq A^{2}$, is a strengthening of $\left.P\right|_{A}$:

1. The Miller covering $\quad C_{\mathrm{M}}: x C_{\mathrm{M}} y \quad \Leftrightarrow x P y \wedge P^{-1}(y) \subset P^{-1}(x)$.
2. The Fishburn covering $C_{\mathrm{F}}: x C_{\mathrm{F}} y \Leftrightarrow x P y \wedge P(x) \subset P(y)$.
3. The McKelvey covering $C_{\text {Mck }}: x C_{\text {Mck }} y \Leftrightarrow x P y \wedge P^{-1}(y) \subset P^{-1}(x) \wedge P(x) \subset P(y)$.

The set of all alternatives that are not covered in A by any alternative is called the uncovered set of a feasible set A.

The Miller, Fishburn and McKelvey uncovered sets will be denoted $U C_{\mathrm{M}}, U C_{\mathrm{F}}$ and $U C_{\mathrm{McK}}$, correspondingly.

Minimal externally stable sets

A nonempty subset B of A is called

P-dominating	if	$\forall x \in A$,	$\exists y \in B: y P x$
P-externally stable	if	$\forall x \in A \backslash B$,	$\exists y \in B: y P x$
R-externally stable	if $\quad \forall x \in A \backslash B$,	$\exists y \in B: y R x$	
Self-protecting	if	$\forall x \in A$,	$(\exists y \in B: y P x) \vee(\forall y \in B, y R x)$
Weakly stable	if $\quad \forall x \in A \backslash B$,	$(\exists y \in B: y P x) \vee(\forall y \in B, y R x)$	

Tournament solutions: the union of all minimal

P-dominating sets	D	(Duggan 2013, Subochev 2016)
P-externally stable sets	ES	(Wuffl, Feld, Owen \& Grofman 1989, Subochev 2008)
R-externally stable sets	RES (Aleskerov \& Subochev 2009, 2013)	
Self-protecting sets	SP	(Roth 1976, Subochev 2020)
Weakly stable sets	WS	(Aleskerov \& Kurbanov 1999)

Relations of E to other solutions

In proper tournaments, $B P \subseteq U C \subseteq E S$, also $B P \subseteq D \subseteq E S$.

In weak tournaments,

1. $E \subseteq U C_{\text {Mck }}$ (Dutta, Laslier, 1999)
2. $E \not \subset U C_{\mathrm{M}} \wedge U C_{\mathrm{M}} \not \subset E$, it remains to be proven that $E \cap \cup C_{\mathrm{M}} \neq \varnothing$ always holds.
3. $E \not \subset U C_{\mathrm{F}} \wedge \cup C_{\mathrm{F}} \not \subset E$, it remains to be proven that $E \cap \cup C_{\mathrm{M}} \neq \varnothing$ always holds.
4. $E \not \subset E S \wedge E S \not \subset E$, but $E \cap E S \neq \varnothing$ always holds.
5. $E \not \subset D \wedge D \not \subset E$, but $E \cap D \neq \varnothing$ always holds.
6. $R E S \not \subset E$ and $E \cap R E S \neq \varnothing$ always holds.
7. $E \not \subset S P \wedge S P \not \subset E$, but $E \cap S P \neq \varnothing$ always holds.
8. $E \not \subset W S \wedge W S \not \subset E$, but $E \cap W S \neq \varnothing$ always holds.

Ranking based on a tournament solution

Suppose, we are interested in ranking alternatives from A.
Then we may use the following procedure:

- Tournament solution $S(A, R)$ choses the set $B_{(1)}$ of the best alternatives in $A, B_{(1)}=S(A, R)$.
- Exclude these alternatives from A and apply S to the rest. $B_{(2)}=S\left(A \backslash B_{(1)}, R\right)=S(A \backslash S(A, R), R)$ will be the set of the second-best alternatives in A.
- By repeated exclusion of the best alternatives determined at each step of the procedure the set A is separated into
 groups $B_{(r)}=S\left(A \backslash\left(B_{(r-1)} \cup B_{(r-2)} \cup \ldots \cup B_{(2)} \cup B_{(1)}\right), R\right)$, and that is the ranking.
- Let r denote the rank of x in this ranking.

Bibliometric data

Indicator	Database	Year	Publication window, years	Weighted	Sizedependent
impact factor	WoS/JCR	2011	2	No	No
5-year impact factor	WoS/JCR	2011	5	No	No
immediacy index	WoS/JCR	2011	1	No	No
article influence	WoS/JCR	2011	5	Yes	No
Hirsch index	WoS	$\begin{gathered} \hline 2007-2011 \\ \text { (papers and } \\ \text { citations) } \\ \hline \end{gathered}$	5	No	Yes
SNIP	Scopus	2011	3	No	No
SJR	Scopus	2011	3	Yes	No
Economics: 212 jou Management: 93 Political Science: 99					

Severity of Condorcet paradox evaluated

Numbers of 3-, 4- and 5-step P-cycles and ties

	3-step cycles	4-step cycles	5-step cycles	Tied pairs	All pairs
Economics	2446	22427	226103	197	22366
Management	203	787	3254	33	4278
Political Science	149	430	1344	73	4851

Discrimination

Total numbers of ranks in rankings based on sorting

	Number of journals	UC $_{\text {M }}$	ES	E
Management	93	42	33	49
Political Science	99	42	36	45

Kendall τ_{b} (economic journals)

	IF	5-IF	Immediacy	AI	Hirsch	SNIP	SJR
5-year IF	$\mathbf{0 . 8 3}$ $\mathbf{0}$	$\mathbf{1 . 0 0 0}$	0.510	0.725	0.702	0.726	0.741
Markovia n	0.819	0.891	$\mathbf{0 . 5 6 0}$	$\mathbf{0 . 7 6}$	$\mathbf{0 . 7 2 9}$	$\mathbf{0 . 7 5 0}$	$\mathbf{0 . 7 7 5}$

ERGO

The Markovian ranking represents the set of seven single-indicatorbased rankings better than the ranking based of 5-year impact factor

The rankings of rankings (based on τ_{b})

$\begin{aligned} & \underset{\substack{\mathrm{C}\\ }}{ } \end{aligned}$	Managemen t	Political Science
1	E	ES
2	ES	$U C_{M}$
3	$U C_{M}$	Copeland 3
4	Copeland 2	Copeland 2
5	Copeland 3	E
6	Markovian	Markovian
7	5-IF	5-IF
8	SNIP	Hirsch
9	Hirsch	AI / IF / SJR
10	AI	
11	SJR	
12	IF	SNIP
13	Immediacy	Immediacy

The rankings of rankings
 (based on the share of strictly coinciding pairs)

$\begin{aligned} & \underset{\sim}{c} \\ & \text { ָ̃ㄴ } \end{aligned}$	Managemen t	Political Science
1	Copeland 3	Copeland 2 / Copeland 3 / Markovian
2	Copeland 2	
3	Markovian	
4	E	E
5	$U C_{M}$	$U C_{M}$
6	5-IF	5-IF
7	ES	ES
8	AI	SNIP
9	IF	AI
10	SNIP	IF / Hirsch / SJR
11	SJR	
12	Hirsch	
13	Immediacy	Immediacy

НАЦИОНАЛЬНЫИ ИССЛЕДОВАТЕЛЬСКИИ УНИВЕРСИТЕТ

Спасибо за внимание!

ul. Myasnitskaya, 20
Moscow, Russia, 101000

Phone: (495) 621-7983, Fax: (495) 628-7931
www.hse.ru

