О выборе победителя в турнире: теория и приложения

Андрей Субочев

Международный центр анализа и выбора решений (DeCAn Lab)
Национальный исследовательский университет «Высшая школа экономики»

Alternatives, comparisons, choices

X - the general set of alternatives.
A - the feasible set of alternatives: $A \subseteq X \wedge A \neq \varnothing$.
The feasible set is a variable.
R - results of binary comparisons, $R \subseteq X \times X$.
R is presumed to be complete: $\forall x \in X, \forall y \in X,(x, y) \in R \vee(y, x) \in R$.
$\left.R\right|_{A}=R \cap A \times A$ - restriction of R onto A.

$$
\left(A,\left.R\right|_{A}\right) \text { - abstract game. }
$$

P - asymmetric part of $R, P \subseteq R:(x, y) \in P \Leftrightarrow((x, y) \in R \wedge(y, x) \notin R)$.
If $\left.P\right|_{A}$ is complete, $\forall x \in X, \forall y \in X \wedge y \neq x,(x, y) \in P \vee(y, x) \in P$, then
$\left(A,\left.P\right|_{A}\right)$ - tournament.

Tournament solutions

A tournament solution S is a choice correspondence $S(A, P): 2^{X} \backslash \varnothing \times 2^{X \times X} \rightarrow 2^{X}$ that has the following properties:
0. Locality: $S(A, P)=S\left(\left.P\right|_{A}\right) \subseteq A$

1. Nonemptiness: $\forall A, \forall P, S\left(\left.P\right|_{A}\right) \neq \varnothing$;
2. Neutrality: permutation of alternatives' names and choice commute;
3. Condorcet consistency: if there is the Condorcet winner w for $\left.P\right|_{A}$ then $S\left(\left.P\right|_{A}\right)=\{w\}$.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
x_{1}	0	1	0	1	0
x_{2}	0	0	1	1	0
x_{3}	1	0	0	1	0
x_{4}	0	0	0	0	1
x_{5}	1	1	1	0	0

Tournament matrix

Tournament digraph

Properties a.k.a. Axioms

- Idempotency: $\forall A, S(S(A))=S(A)$.
- The Aizerman-Aleskerov condition: $\forall A, \forall B, S(A) \subseteq B \subseteq A \Rightarrow S(B) \subseteq S(A)$.
- generalized Nash independence of irrelevant alternatives (ind. of outcasts):
- $\forall A, \forall B, S(A) \subseteq B \subseteq A \Rightarrow S(B)=S(A)$.

NIIA \Leftrightarrow Idempotency \wedge the Aizerman-Aleskerov condition

- Monotonicity (monotonicity w.r.t. results):
$\forall P_{1}, P_{2} \subseteq X^{2}, \forall A \subseteq X, \forall x \in S\left(\left.P_{1}\right|_{A}\right),\left(\left.P_{1}\right|_{A\{x\}}=\left.P_{2}\right|_{A\{x\}} \wedge \forall y \in A, x P_{1} y \Rightarrow x P_{2} y\right) \Rightarrow x \in S\left(\left.P_{2}\right|_{A}\right)$
- Independence of irrelevant results (ind. of losers):
$\forall P_{1}, P_{2} \subseteq X^{2}, \forall A \subseteq X,\left(\forall x \in S\left(\left.P_{1}\right|_{A}\right), \forall y \in A,\left(\left(x P_{1} y \Leftrightarrow x P_{2} y\right) \wedge\left(y P_{1} x \Leftrightarrow y P_{2} x\right)\right) \Rightarrow S\left(\left.P_{1}\right|_{A}\right)=S\left(\left.P_{2}\right|_{A}\right)\right.$
- Computational simplicity: There is a polynomial algorithm for computing S.

Solutions

Uncovered set $\quad U C=\{x \in A \mid \forall y \in A, y P x \Rightarrow \exists z \in A: x P z P y\}$
Copeland set

$$
C=\operatorname{argmax}|\{y \in A \mid x P y\}|
$$

Slater set
$S L=\left\{\max \left(L_{k}\right) \mid L_{k} \in \operatorname{argmin} \kappa\left(L_{k}, P\right)\right\}$, where $L_{k} \subseteq A \times A$ - a linear order, $\kappa\left(L_{k}, P\right)$ - the Kendall distance

Banks set

$$
B=\left\{\max \left(L_{k}\right) \mid L_{k} \subseteq P \subseteq A \times A \text { - maximal chain in } P\right\}
$$

Minimal covering set $M C, \forall x \in M C, x \in U C\left(\left.P\right|_{M C}\right) \wedge \forall x \notin M C, x \notin U C\left(\left.P\right|_{M C \cup(x)}\right)$
Bipartisan set
$B P=\operatorname{support}\left(\right.$ Nash Equilibrium $\left(G\left(\left.P\right|_{A}\right)\right.$), where $G\left(\left.P\right|_{A}\right)$ is
a two-player zero-sum non-cooperative game on a tournament $\left.P\right|_{A}$

Stable sets

A nonempty subset B of A is called

Dominant	if	$\forall x \in A \backslash B$,	$\forall y \in B: y P x$
Dominating	if	$\forall x \in A$,	$\exists y \in B: y P x$
Externally stable	if	$\forall x \in A \backslash B$,	$\exists y \in B: y P x$

P-dominant

P-dominating

P-ext. stable

Minimal stable sets

A set B is called minimal with respect to a given property if B has the property and none of B's proper nonempty subsets does.

Tournament solutions: the union of all minimal
Dominant sets
TC
a.k.a. the Top cycle

Dominating sets D

Externally stable sets ES

Axiomatic analysis

	$U C$	C	$S L$	B	$M C$	$B P$	$T C$	D	$E S$
Idempotence	NO	NO	NO	NO	YES	YES	YES	NO	YES
AA property	YES	NO	NO	YES	YES	YES	YES	NO	YES
Outcast (Nash independence)	NO	NO	NO	NO	YES	YES	YES	NO	YES
Monotonicity	YES	NO	YES						
Independence of losers	NO	NO	NO	NO	YES	YES	YES	NO	YES
Computational simplicity	YES	YES	NO	NO	YES	YES	YES	YES	YES

Ranking based on a tournament solution

Suppose, we are interested in ranking alternatives from A.
Then we may use the following procedure:

- Tournament solution $S(P, A)$ choses the set $B_{(1)}$ of the best alternatives in $A, B_{(1)}=S(P, A)$.
- Exclude these alternatives from A and apply S to the rest. $B_{(2)}=S\left(P, A \backslash B_{(1)}\right)=S(P, A \backslash S(P, A))$ will be the set of the secondbest alternatives in A.
- By repeated exclusion of the best alternatives determined at each step of the procedure the set A is separated into
 groups $B_{(r)}=S\left(P, A \backslash\left(B_{(r-1)} \cup B_{(r-2)} \cup \ldots \cup B_{(2)} \cup B_{(1)}\right)\right)$, and that is the ranking.
- Let $r=r(x, P)$ denote the rank of x in this ranking.

The properties of the ranking rule based on

 sorting either by ES or by RES- Weak Pareto principle: if x Pareto dominates y, then $x Q(P) y$.
- Weak monotonicity w.r.t the individual preferences Π_{i} (Smith's monotonicity):
$\left(\left.\Pi\right|_{A \mid\{x\}}=\left.\Pi^{\prime}\right|_{A\{\{x\}} \wedge \forall i \in G, \forall y \in A, x \Pi_{i} y \Rightarrow x \Pi_{i}^{\prime} y\right) \Rightarrow$
$\Rightarrow\left(\forall y \in A, x Q(P) y \Rightarrow x Q\left(P^{\prime}\right) y\right)$

Independence of irrelevant classes of alternatives

НАЦИОНАЛЬНЫИ ИССЛЕДОВАТЕЛЬСКИИ УНИВЕРСИТЕТ

Спасибо за внимание!

ul. Myasnitskaya, 20
Moscow, Russia, 101000

Phone: (495) 621-7983, Fax: (495) 628-7931
www.hse.ru

