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Observations and motivation

Classic results of Computational Social Choice are the impossibility and possibility
theorems.

Impossibility theorems

In 1785, le marquis de Condorcet observed that majority rule does not preserve a set of
rational preferences on a set (of alternative) 𝐴 of cardinality |𝐴| > 3.

In 1951, Kenneth Arrow proved that there are no non-dictatorship local aggregation rules
that preserve a set of rational preferences on a finite set 𝐴 of cardinality |𝐴| > 3.

Kenneth J. Arrow. Social Choice and Individual Values, Yale University Press, 1951.

In 2005, Saharon Shelah showed that, under some additional conditions, Arrow’s
impossibility principle applies to any symmetric set of preferences.

Shelah, S.: On the Arrow property. Adv. in Appl. Math., 34, 217–251, 2005.

Etc...
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Shelah’s theorem on the Arrow property and its refinement

Notation and definitions.

𝐴 – a finite non-empty set (of alternatives).

C𝑟(𝐴) – the set of all choice functions c : [𝐴]𝑟 → 𝐴 where 𝑟 is a natural number
and [𝐴]𝑟 is a set of all 𝑟-element subsets of 𝐴. Functions c ∈ C𝑟(𝐴) represent
individual preferences.

A set D ⊆ C𝑟(𝐴) is symmetric if

c ∈ D ⇒ c𝜎 ∈ D

for all permutations 𝜎 of 𝐴 where c𝜎 is a choice function defined by

c𝜎(𝑝) = 𝜎−1c(𝜎𝑝)

for all 𝑝 ∈ [𝐴]𝑟.

Any function 𝑓 : (C𝑟(𝐴))𝑛 → C𝑟(𝐴) is called an aggregation rule.

An aggregation rule 𝑓 : (C𝑟(𝐴))𝑛 → C𝑟(𝐴) preserves a set D ⊆ C𝑟(𝐴) if

𝑓(d1, d2, . . . , d𝑛) ∈ D

for all functions d1, d2, . . . , d𝑛 ∈ D.

An aggregation rule 𝑓 : (C𝑟(𝐴))𝑛 → C𝑟(𝐴) is called a dictatorship rule if it is a
projection.
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An aggregation rule 𝑓 : (C𝑟(𝐴))𝑛 → C𝑟(𝐴) is local if, for all c1, c2, . . ., c𝑛, d1, d2,
. . ., d𝑛 ∈ C𝑟(𝐴) and 𝑝 ∈ [𝐴]𝑟,

1. (c1(𝑝) = d1(𝑝) ∧ . . . ∧ c𝑛(𝑝) = d𝑛(𝑝)) ⇒ 𝑓(c1, c2, . . . , c𝑛)(𝑝) = 𝑓(d1, d2, . . . , d𝑛)(𝑝)
(𝑓 acts pointwisely),

2. 𝑓(d1, d2, . . . , d𝑛)(𝑝) ∈ {d1(𝑝), d2(𝑝), . . . , d𝑛(𝑝)}
(𝑓 is pointwisely conservative).

A set D ⊆ C𝑟(𝐴) has the Arrow property if every local aggregation rule that
preserves it is a dictatorship rule.

Theorem (S. Shelah, 2005)

If 7 6 𝑟 6 |𝐴|−7, than any non-empty proper subset D of C𝑟(𝐴) has the Arrow property.

A complete classification of symmetric sets D ⊆ C𝑟(𝐴) with the Arrow property (for all
finite 𝑟) was obtained in 2014 – 2016.

Polyakov, N.L., Shamolin, M.V.: On a generalization of Arrow’s impossibility
theorem. Dokl. Math., 89, 290–292, 2014 (only announced).

Polyakov N. L. Galois correspondences for classes of discrete functions and their
application to mathematical problems of Social Choice Theory, PhD thesis, 2016
(full proof).
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Possibility theorems state that some set D of preferences is preserved by some
aggregation rule 𝑓 , or at least that the application of 𝑓 to preferences from D does not
lead beyond some set C (for example, the set of rational preferences).

Apparently, the first informative example (single peaked domains) belongs to D. Black.

Duncan Black. The Theory of Committees and Elections, Cambridge University
Press, 1958.

Amartya Sen and Mamoru Kaneko obtained a complete solution for majority rule and
rational preferences.

Sen, A. K. A Possibility Theorem on Majority Decisions. Econometrica, 34,
491–499, 1966.

Kaneko, Mamoru. Necessary and Sufficient Condition for Transitivity in Voting
Theory. Journal of Economic Theory. Vol. 11. Pp. 385–393, 1975.

Etc...

What aggregation rules... 6 / 27



Possibility theorems state that some set D of preferences is preserved by some
aggregation rule 𝑓 , or at least that the application of 𝑓 to preferences from D does not
lead beyond some set C (for example, the set of rational preferences).

Apparently, the first informative example (single peaked domains) belongs to D. Black.

Duncan Black. The Theory of Committees and Elections, Cambridge University
Press, 1958.

Amartya Sen and Mamoru Kaneko obtained a complete solution for majority rule and
rational preferences.

Sen, A. K. A Possibility Theorem on Majority Decisions. Econometrica, 34,
491–499, 1966.

Kaneko, Mamoru. Necessary and Sufficient Condition for Transitivity in Voting
Theory. Journal of Economic Theory. Vol. 11. Pp. 385–393, 1975.

Etc...

What aggregation rules... 6 / 27



Possibility theorems state that some set D of preferences is preserved by some
aggregation rule 𝑓 , or at least that the application of 𝑓 to preferences from D does not
lead beyond some set C (for example, the set of rational preferences).

Apparently, the first informative example (single peaked domains) belongs to D. Black.

Duncan Black. The Theory of Committees and Elections, Cambridge University
Press, 1958.

Amartya Sen and Mamoru Kaneko obtained a complete solution for majority rule and
rational preferences.

Sen, A. K. A Possibility Theorem on Majority Decisions. Econometrica, 34,
491–499, 1966.

Kaneko, Mamoru. Necessary and Sufficient Condition for Transitivity in Voting
Theory. Journal of Economic Theory. Vol. 11. Pp. 385–393, 1975.

Etc...

What aggregation rules... 6 / 27



Possibility theorems state that some set D of preferences is preserved by some
aggregation rule 𝑓 , or at least that the application of 𝑓 to preferences from D does not
lead beyond some set C (for example, the set of rational preferences).

Apparently, the first informative example (single peaked domains) belongs to D. Black.

Duncan Black. The Theory of Committees and Elections, Cambridge University
Press, 1958.

Amartya Sen and Mamoru Kaneko obtained a complete solution for majority rule and
rational preferences.

Sen, A. K. A Possibility Theorem on Majority Decisions. Econometrica, 34,
491–499, 1966.

Kaneko, Mamoru. Necessary and Sufficient Condition for Transitivity in Voting
Theory. Journal of Economic Theory. Vol. 11. Pp. 385–393, 1975.

Etc...

What aggregation rules... 6 / 27



Shelah’s theorem (and its refinement) does not allow us to hope that, in reasonable
cases, the possibility theorems will be true for any non-trivial set of preferences that is
closed under permutations of the set of alternatives. However, the following fact holds:

majority rule 𝜇 (as well as many other rules) has some non-trivial invariant preference
sets D such that any preference set D𝜎 obtained from D by a permutation 𝜎 of
alternatives is also preserved by 𝜇

(for the majority rule, this condition is satisfied for all invariant sets D).

We believe that this is an important property of aggregation rules. Indeed, if an
invariant D of the aggregation rule 𝑓 can be determined by a set-theoretic formula
without constants from a set of alternatives 𝐴, then all sets D𝜎 are also invariants of 𝑓 .
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In addition, we believe that in this case the aggregation on the set 𝐷 by means of the
rule 𝑓 can be understood as a certain logical procedure. As an argument, we will refer to
the statement of Alfred Tarski on the nature of logical concepts:

“ ...a notion (individual, set, function, etc) based on a fundamental universe of discourse
is said to be logical if and only if it is carried onto itself by each one-one function whose
domain and range both coincide with the entire universe of discourse”.

Tarski, A. What are logical notions? History and Philosophy of Logic, 7, 143–154,
1986.
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The above motivates us to the following task: to describe all local (in some natural
sense) aggregation rules that have a non-trivial class 𝒟 of invariant preference sets D
that is closed under permutations.

We argue that this problem is solvable in a very general situation, but leads to an overly
broad classification. However, if we restrict ourselves to the case of preference
aggregation from C2(𝐴) (of a choice function on [𝐴]2), we get a beautiful and, we hope,
useful result. Note that this case includes many classical problems of Computational
Social Choice, including the problem of aggregation of rational preferences.

In this work, we apply the clone approach proposed by S. Shelah. The essence of this
approach will also be briefly outlined.
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General settings

Let

𝐶 – a non-empty set (of conditions),

𝐷 – a non-empty set (of decisions), |𝐷| 6 |𝐶|,
𝐷𝑀 ⊆ 𝐷𝐶 – a non-empty set (of individual decision making functions),

* – a fixed embedding 𝑆𝐷 → 𝑆𝐶 where 𝑆𝑋 is a permutation group of a set 𝑋.

Examples

In the most typical situation,

𝐶 is a set of subsets of 𝐷 perhaps enriched by some additional structure and closed
under isomorphisms,

𝐷𝑀 is a set of all choice functions defined on 𝐶 (i.e., functions c : 𝐶 → 𝐷
satisfying c(𝑥) ∈ 𝑥 for all 𝑥 ∈ 𝐶),

for any 𝜎 ∈ 𝑆𝐷 and 𝑐 ∈ 𝐶, 𝜎*(𝑐) is the isomorphic image of 𝑐 under
isomorphism 𝜎�𝑐 (we write 𝜎* instead of *(𝜎)).
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Definitions

For any function d ∈ 𝐷𝑀 and permutation 𝜎 ∈ 𝑆𝐷 the function d𝜎 : 𝐶 → 𝐷 is
defined by

d𝜎(𝑐) = 𝜎−1d(𝜎*(𝑐))

for all 𝑐 ∈ 𝐶.

For any set D ⊆ 𝐷𝑀 and permutation 𝜎 ∈ 𝑆𝐷 let

D𝜎 = {d𝜎 : d ∈ D}.

A set D ⊆ 𝐷𝑀 is symmetric if
D𝜎 = D

for any permutation 𝜎 ∈ 𝑆𝐷.

A set 𝒟 ⊆ P(𝐷𝑀) is symmetric if

D ∈ 𝒟 ⇒ D𝜎 ∈ 𝒟

for any permutation 𝜎 ∈ 𝑆𝐷 and set D ⊆ 𝐷𝑀 .
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Examples

Let 𝐶 be the set [𝐷]𝑟 of all 𝑟-element subsets of 𝐷, and 𝐷𝑀 = C𝑟(𝐷).

The following sets D ⊆ 𝐷𝑀 are symmetric:

∅,
𝐷𝑀 ,

the set R𝑟 of all rational choice functions d : [𝐷]𝑟 → 𝐷, i.e. of all choice functions
d≻ satisfying

d≻(𝑥) = max
≻

𝑥

where ≻ is an arbitrary linear order on 𝐷,

etc...

The following sets 𝒟 ⊆ P(𝐷𝑀) are symmetric:

any singleton {D} for an arbitrary symmetric set D ⊆ 𝐷𝑀 ,

the set of all singletons {d}, d ∈ 𝐷𝑀 ,

the set {{d≻ : ≻ ∈ 𝑆𝑃>} : > is a linear order on 𝐷} where 𝑆𝑃> is a single peaked
domain generated by >,

etc...
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Definitions
For any 𝑛 ∈ N, any function 𝑓 : 𝐷𝑀𝑛 → 𝐷𝑀 is called an aggregation rule.

An aggregation rule 𝑓 : 𝐷𝑀𝑛 → 𝐷𝑀 preserves a set D ⊆ 𝐷𝑀 and a set D ⊆ 𝐷𝑀 is
preserved by aggregation rule 𝑓 : 𝐷𝑀𝑛 → 𝐷𝑀 (or D is an invariant of 𝑓) if

𝑓(d1, d2, . . . , d𝑛) ∈ D

for all functions d1, d2, . . . , d𝑛 ∈ D.

An aggregation rule 𝑓 : 𝐷𝑀𝑛 → 𝐷𝑀 is called a dictatorship rule if it is a projection, i.e.
if there is a number 𝑖, 1 6 𝑖 6 𝑛 such that

𝑓(d1, d2, . . . , d𝑛) = d𝑖.

Obviously, a dictatorship rule preserves any set D ⊆ 𝐷𝑀 .
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Definition
An aggregation rule 𝑓 : 𝐷𝑀𝑛 → 𝐷𝑀 is local (or satisfies the Arrow conditions) if, for
all c1, c2, . . ., c𝑛, d1, d2, . . ., d𝑛 ∈ 𝐷𝑀 and 𝑎 ∈ 𝐶,

1. (c1(𝑎) = d1(𝑎) ∧ . . . ∧ c𝑛(𝑎) = d𝑛(𝑎)) ⇒ 𝑓(c1, c2, . . . , c𝑛)(𝑎) = 𝑓(d1, d2, . . . , d𝑛)(𝑎)
(𝑓 acts pointwisely),

2. 𝑓(d1, d2, . . . , d𝑛)(𝑎) ∈ {d1(𝑎), d2(𝑎), . . . , d𝑛(𝑎)}
(𝑓 is pointwisely conservative).

An aggregation rule 𝑓 : 𝐷𝑀𝑛 → 𝐷𝑀 is simple if, for all d1, d2, . . ., d𝑛 ∈ 𝐷𝑀 and
𝑎, 𝑏 ∈ 𝐶,

3. (d1(𝑎) = d1(𝑏)∧ . . .∧d𝑛(𝑎) = d𝑛(𝑏)) ⇒ 𝑓(d1, d2, . . . , d𝑛)(𝑎) = 𝑓(d1, d2, . . . , d𝑛)(𝑏).

Examples

Any dictatorship rule is local and simple.

If an aggregation rule 𝑓 is local and |{d(𝑎) : d ∈ 𝐷𝑀}| 6 2 for any 𝑎 ∈ 𝐶 (the case
of binary choice), then 𝑓 is simple.

Majority rule is local and simple.
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Definition
An aggregation rule 𝑓 : 𝐷𝑀𝑛 → 𝐷𝑀 is represented by a function 𝑔 : 𝑋 → 𝐷 where
𝑋 ⊆ 𝐷𝑛 if, for all d1, d2, . . . , d𝑛 ∈ 𝐷𝑀 and 𝑎 ∈ 𝐶,

1 (d1(𝑎), d2(𝑎), . . . , d𝑛(𝑎)) ∈ 𝑋,

2 𝑓(d1, d2, . . . , d𝑛)(𝑎) = 𝑔(d1(𝑎), d2(𝑎), . . . , d𝑛(𝑎)).

Definition
Any function 𝑓 : 𝑋 → 𝐷 where 𝑋 ⊆ 𝐷𝑛 is called conservative if

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ {𝑥1, 𝑥2, . . . , 𝑥𝑛}

for all 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝑋.

Claim
Any local and simple aggregation rule 𝑓 : 𝐷𝑀𝑛 → 𝐷𝑀 is represented by a conservative
function 𝑔 : 𝐷𝑛 → 𝐷.
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Clonal approach

Definition

A clone (on a set 𝑋) ℱ is a set of functions 𝑓 ∈
⋃︀

𝑛<𝜔

𝑋𝑋𝑛

closed under superposition

and containing all projections.

A clone ℱ is conservative if it contains only conservative functions.

A clone ℱ on a set 𝑋 is symmetric if for any 𝑛 ∈ N, 𝑓 ∈ ℱ , and 𝜎 ∈ 𝑆𝑋 it contains the
function 𝑓𝜎 defined by

𝑓𝜎(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝜎−1𝑓(𝜎(𝑥1), 𝜎(𝑥2), . . . , 𝜎(𝑥𝑛)).

A clone ℱ is generated by a function 𝑔 (by a set of functions 𝒢) if it is the minimal
(under inclusion) clone containing 𝑔 (respectively, 𝒢).

Clones and closed functional classes on finite sets have been carefully studied since the
work of E. Post, who constructed a complete classification of closed classes of Boolean
functions.

Post E.: Two-valued iterative systems of mathematical logic. Annal of Math.
studies 5. Princeton University Press, Princeton (1942).
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For any aggregation rule 𝑓 , the set of all sets D ⊆ 𝐷𝑀 that are invariant for 𝑓 is
denoted by Inv 𝑓 . For any set ℱ of aggregation rules we denote Invℱ =

⋂︀
𝑓∈ℱ

Inv 𝑓 .

Symmetrically, PresD is a set of all aggregation rules 𝑓 that preserve a set D ⊆ 𝐷𝑀 ,
and Pres𝒟 =

⋂︀
D∈𝒟

PresD for any 𝒟 ⊆ P(𝐷𝑀).

The set of all local and simple aggregation rules is denoted by ℒ𝒮.

Claim

1 For any set 𝒟 ⊆ P(𝐷𝑀) the sets Pres𝒟 and Pres𝒟 ∩ ℒ𝒮 are clones on 𝐷𝑀 .

2 For any set 𝒟 ⊆ P(𝐷𝑀) the set Pres0 𝒟 of all conservative functions 𝑔 what
represent functions 𝑓 ∈ Pres𝒟 ∩ ℒ𝒮 is a conservative clone on 𝐷.

3 If a set 𝒟 is symmetric then the clone Pres0 𝒟 is symmetric.

Remark
The pair (Inv,Pres) is an antitone Galois connection between Boolean lattices P(𝐴𝑅)
and P(P(𝐷𝑀)).
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Definition
A set D ⊆ 𝐷𝑀 is trivial if either it is empty or there is a set 𝑋 ⊆ 𝐶 and a function
c : 𝑋 → 𝐷 such that

D = {d ∈ 𝐷𝑀 : 𝑑 �𝑋= c}.
A set 𝒟 ⊆ P(𝐷𝑀) is trivial if it consists only of trivial sets D ⊆ 𝐷𝑀 .

Examples

The following sets 𝒟 ⊆ P(𝐷𝑀) are trivial:

1 ∅,
2 {𝐷𝑀},
3 {{d} : d ∈ 𝐷𝑀},
4 etc...

Claim
Each trivial set D ⊆ 𝐷𝑀 is preserved by any local and simple aggregation rule.
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Claim
Let ℱ be a symmetric conservative clone on a set 𝐷, and let there is a conservative
function ℎ ∈

⋃︀
𝑛<𝜔

𝐷𝐷𝑛

that does not belong to ℱ .

Then there is a set 𝐶 and a set 𝐷𝑀 ⊆ 𝐷𝐶 such that for any 𝑛 < 𝜔 each 𝑛-ary function
𝑔 ∈ ℱ represents some aggregation rule 𝑓 : 𝐷𝑀𝑛 → 𝐷𝑀 with a non-trivial symmetric
invariant set D ⊆ 𝐷𝑀 .

Now we can return to the question: what local and simple non-dictatorship aggregation
rules have non-trivial symmetric set of invariants 𝒟 ⊆ P(𝐷𝑀)? Neglecting some details,
for an answer it is enough to classify all symmetric conservative clones on a set 𝐷.

Surprisingly, this problem is solvable for finite sets 𝐷. However, the full classification is
rather complex. For example, on a four-element set, there are 42 symmetrical
conservative clones.

Polyakov N. L. Galois correspondences for classes of discrete functions and their
application to mathematical problems of Social Choice Theory (PhD thesis), 2016.

Polyakov N. L. Functional Galois connections and a classification of symmetric
conservative clones with a finite carrier. arXiv:1810.02945, 2018 (preliminary variant
of a simpler version of proof).
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Locally Boolean case

Definition

A set 𝐷𝑀 ⊆ 𝐷𝐶 is locally Boolean if |{d(𝑎) : d ∈ 𝐷𝑀}| = 2 for any 𝑎 ∈ 𝐶.

For example, the set C2(𝐷) of all choice functions d : [𝐷]2 → 𝐷 is locally Boolean. In
order to obtain other examples, one can replace [𝐷]2 by a set of multisets 𝑋 with
two-element supports Supp𝑋 ⊆ 𝐷, or by a set 𝐷𝑛

62 (accordingly changing the concept
of the choice function).

Definition
А set ℱ that consists of conservative functions 𝑓 defined on a set 𝐷𝑛

62 (1 6 𝑛 < 𝜔),
contains all projection (on 𝐷𝑛

62) and is closed under superposition is called a 2-clone (the
concept of superposition is understood in the natural sense).

In order to find all local and simple aggregation rules with non-trivial symmetric
invariants on a locally Boolean set 𝐷𝑀 ⊆ 𝐷𝐶 , it suffices to classify all symmetric
2-clones on 𝐷. It turns out that if 5 6 |𝐷| < 𝜔, there are only 10 such 2-clones.
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Let us list all Boolean clones ℱ , which

1 consist of functions 𝑓 that preserve 0 and 1, i.e.

𝑓(0, 0, . . . , 0) = 0 and 𝑓(1, 1, 1, . . . , 1) = 1,

2 are closed with respect to duality, i.e.

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ ℱ ⇒ 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ ℱ .

Post’s classification theorem yields exactly six such clones: 𝑂1, 𝐷1, 𝐷2, 𝐿4, 𝐴4, 𝐶4

(in the Post’s notation). These clones and the Boolean functions that generate
them are listed in the table:

Clone Generating functions Clone Generating functions

𝑂1 𝑥 𝐷1

𝑥𝑦 ∨ 𝑦𝑧 ∨ 𝑦𝑧 or
𝑥𝑦 ∨ 𝑦𝑧 ∨ 𝑥𝑧, 𝑥⊕ 𝑦 ⊕ 𝑧

𝐷2 𝑥𝑦 ∨ 𝑦𝑧 ∨ 𝑥𝑧 𝐿4 𝑥⊕ 𝑦 ⊕ 𝑧

𝐴4 𝑥𝑦, 𝑥 ∨ 𝑦 𝐶4 𝑥 ∨ 𝑦𝑧
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Definition
Let |𝐷| > 2.

1 For any clone ℱ ∈ {𝑂1, 𝐷1, 𝐷2, 𝐿4, 𝐴4, 𝐶4}, we say that a 2-clone 𝒢 on 𝐷 is the
free extension of ℱ if

1 For any set 𝑋 ∈ [𝐷]2 the set 𝒢𝑋 =
⋃︀

16𝑛<𝜔

{𝑓 |𝑋𝑛 : 𝑓 ∈ 𝒢 ∩𝐷𝐷𝑛
2 } is a clone

that is naturally isomorphic to ℱ ,
2 For all 𝑛 < 𝜔 and 𝑓 : 𝐷𝑛

2 → 𝐷, 𝑓 ∈ 𝒢 iff 𝑓 �𝑋𝑛∈ 𝒢𝑋 for all 𝑋 ∈ [𝐷]2.

The free extension of ℱ is denoted by ℱ↑(𝐷).

2 For any clone ℱ ∈ {𝑂1, 𝐷1, 𝐷2, 𝐿4}, we say that a 2-clone 𝒢 on 𝐷 is the
dependent extension of ℱ if

1 For any set 𝑋 ∈ [𝐷]2 the set 𝒢𝑋 =
⋃︀

16𝑛<𝜔

{𝑓 �𝑋𝑛 : 𝑓 ∈ 𝒢 ∩𝐷𝐷𝑛
2 } is a clone

that is naturally isomorphic to ℱ ,
2 For all 𝑛 < 𝜔, 𝑛-ary function 𝑓 ∈ 𝒢, sets 𝑋,𝑌 ∈ [𝐷]2, and sequence

𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝑋𝑛

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝜎−1𝑓(𝜎(𝑥1), 𝜎(𝑥2), . . . , 𝜎(𝑥𝑛))

for some bijective map 𝜎 : 𝑋 → 𝑌 .

The dependent extension of ℱ is denoted by ℱ⇑(𝐷).

What aggregation rules... 22 / 27



Theorem
Let 5 6 |𝐷| < 𝜔, and let 𝒢 be a symmetric 2-clone on 𝐷. Then one of two following
conditions holds:

1 𝒢 is the free extension of one of clones 𝑂1, 𝐷1, 𝐷2, 𝐿4, 𝐴4, 𝐶4,

2 𝒢 is the dependent extension of one of clones 𝑂1, 𝐷1, 𝐷2, 𝐿4.

Remark

The free extension of the clone 𝐶4 contains all conservative functions on 𝐷. If the
function 𝑔 ∈ 𝐶↑

4 (𝐷) does not belong to any other of the listed clones, then the
corresponding aggregation rule has no non-trivial symmetric sets of invariants.

The depend extension of the clone 𝑂1 contains only projections (what represent the
dictatorship rules). Obviously, any set D ∈ 𝐷𝑀 is preserved by any dictatorship
rule.
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The depend extension of the clone 𝑂1 contains only projections (what represent the
dictatorship rules). Obviously, any set D ∈ 𝐷𝑀 is preserved by any dictatorship
rule.
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The most beautiful result arises if we restrict ourselves to the case when 𝐷𝑀 = C2(𝐷).

Let 𝜆 and 𝜇 be the conservative functions defined on 𝐷3
62 by the identities:

𝜆(𝑥, 𝑥, 𝑦) = 𝜆(𝑥, 𝑦, 𝑥) = 𝜆(𝑦, 𝑥, 𝑥) = 𝑦 and 𝜇(𝑥, 𝑥, 𝑦) = 𝜇(𝑥, 𝑦, 𝑥) = 𝜇(𝑦, 𝑥, 𝑥) = 𝑥.

For simplicity of formulation, let us agree to identify local aggregation rules and the
conservative functions that represent them.

Theorem
Let 5 6 |𝐷| < 𝜔. Let 𝒟 be a nontrivial symmetric subset of P(C2(𝐷)), and let Pres𝒟
contain at least one non-dictatorship local aggregation rule. Then one of three following
alternatives holds:

1 any set D ∈ 𝒟 is preserved by the function 𝜇 and not preserved by the function 𝜆,
and so Pres0 𝒟 = 𝐷⇑

2 (𝐷).

2 any set D ∈ 𝒟 is preserved by the function 𝜆 and not preserved by the function 𝜇,
and so Pres0 𝒟 = 𝐿⇑

4 (𝐷).

3 any set D ∈ 𝒟 is preserved by both the functions 𝜆 and 𝜇, and so
Pres0 𝒟 = 𝐷⇑

1 (𝐷).
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Remarks

The following corollary of the theorem holds.

Let 5 6 |𝐷| < 𝜔. For any local aggregation rule 𝑓 : (C2(𝐷))𝑛 → C2(𝐷) the
following two condition are equivalent:

1 Inv 𝑓 contains a non-trivial symmetric subset,
2 Inv 𝑓 is symmetric, i.e., if 𝑓 preserves a set D ⊆ C2(𝐷), then it also preserves

all its symmetrical images D𝜎.

This is not true for the general case of locally Boolean sets 𝐷𝑀 .

Also, the theorem can be taken as a reduction theorem. Let 5 6 |𝐷| < 𝜔, and let
𝒟 ⊆ P(C2(𝐷)) be a non-trivial symmetric set. In order to check whether there is
any non-dictatorship local aggregation rule that preserves every set D ∈ 𝒟, it
suffices to check whether this is true for the rules 𝜆 and 𝜇. In particular, Arrow
theorem can be proved in this way: for this it suffices to verify that neither rule 𝜆
nor rule 𝜇 preserves the set of rational preferences.

Each function from clones 𝐷⇑
2 (𝐷) and 𝐿⇑

4 (𝐷) has a fairly large family of symmetric
sets of invariants, including rational ones.
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All functions 𝑓 in the clone 𝐷⇑
1 (𝐷) (which includes the clones 𝐷⇑

2 (𝐷) and 𝐿⇑
4 (𝐷))

are self-dual, i.e. satisfy the condition

𝜎(𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛)) = 𝑓(𝜎(𝑥1), 𝜎(𝑥2), . . . , 𝜎(𝑥𝑛))

for all 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝐷 and 𝜎 ∈ 𝑆𝐷. Therefore, each of them can be defined
using a set of decisive coalitions C𝑓 ⊆ P({1, 2, . . . , 𝑛}): for all {𝑎, 𝑏} ∈ [𝐷]2 and
𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ {𝑎, 𝑏}𝑛,

𝑓(𝑥) = 𝑎 ⇔ {𝑖 ∈ {1, 2, . . . , 𝑛} : 𝑥𝑖 = 𝑎} ∈ C𝑓 .

A function 𝑓 belongs to clone 𝐷⇑
2 (𝐷) if and only if the set C𝑓 satisfies the

following conditions: for all sets 𝑋,𝑌 ⊆ {1, 2, . . . , 𝑛}
1 𝑋 ∈ C𝑓 and 𝑋 ⊆ 𝑌 implies 𝑌 ∈ C𝑓 (monotonicity),
2 𝑋 ∈ C𝑓 iff {1, 2, . . . , 𝑛} ∖𝑋 /∈ C𝑓 .

A function 𝑓 belongs to clone 𝐿⇑
4 (𝐷) if and only if the set C𝑓 consists of all subsets

of odd cardinality of some set 𝑋 ⊆ {1, 2, . . . , 𝑛} of odd cardinality. Such
aggregation rules are similar to the decision-making procedure using the
“counting-out game”. The application of this rule in practice would be very strange,
however, surprisingly, it has many good properties, including the fact that it has a
non-trivial symmetric invariant set of choice functions.
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