BETWEEN THE RUDIN-KEISLER AND COMFORT PREORDERS topics: set theory, general topology

NIKOLAI L. POLIAKOV, DENIS I. SAVELIEV

We consider ultrafilters over ω (although most of our results remain true for ultrafilters over any infinite set); as usual, $\beta \omega$ denotes the set of them. For $\mathfrak{u}, \mathfrak{v} \in \beta \omega$ and any ordinal α , define: $\mathfrak{u} R_0 \mathfrak{v}$ iff \mathfrak{u} is principal, $R_{<\alpha} = \bigcup_{\beta < \alpha} R_{\beta}$, and $\mathfrak{u} R_{\alpha} \mathfrak{v}$ iff there exists a continuous map $f : \beta \omega \to \beta \omega$ such that $f(\mathfrak{v}) = \mathfrak{u}$ and $f(n) R_{<\alpha} \mathfrak{v}$ for all $n < \omega$. The hierarchy is non-degenerate and lies between \leq_{RK} and \leq_{C} , the Rudin–Keisler and Comfort preorders.

Theorem 1. $R_1 = \leq_{\mathrm{RK}}$; $R_{<\alpha} \subset R_{\alpha}$ for all $\alpha < \omega_1$; $R_{<\omega_1} = R_{\omega_1} = \leq_{\mathrm{C}}$.

If $n < \omega$, the relations R_n can be redefined in terms of right-continuous ultrafilter extensions of *n*-ary operations on ω as follows: $\mathfrak{u} R_n \mathfrak{v}$ iff there exists $f : \omega^n \to \omega$ such that $\tilde{f}(\mathfrak{v}, \ldots, \mathfrak{v}) = \mathfrak{u}$. Moreover, $R_m \circ R_n = R_{nm}$ (so R_n are not preorders for $2 \le n < \omega$). These observations can be expanded to all R_α by using ω -ary operations. Such an operation is identified with a continuous map of the Baire space ω^{ω} into the discrete space ω ; these maps admit a natural hierarchy ranked by countable ordinals. Any continuous $f : \omega^{\omega} \to \omega$ uniquely extends to a right-continuous $\tilde{f} : (\beta \omega)^{\omega} \to \beta \omega$, i.e., an ω -ary operation on $\beta \omega$.

Proposition 1. Let $\alpha < \omega_1$ and $\mathfrak{u}, \mathfrak{v} \in \beta \omega$. Then $\mathfrak{u} R_\alpha \mathfrak{v}$ iff there exists a continuous $f : \omega^\omega \to \omega$ of rank α such that $\widetilde{f}(\mathfrak{v}, \mathfrak{v}, \ldots) = \mathfrak{u}$.

The composition of arbitrary $R_{<\alpha}$ is expressed via a multiplication-like operation on ordinals. To simplify notation, denote $\sup_{\gamma < \alpha} (\gamma \cdot \beta)$ by $(<\alpha) \cdot \beta$; the explicit calculation of these ordinals, used in getting the following result, is rather cumbersome.

Theorem 2. Let $\alpha, \beta < \omega_1$.

- (i) $R_{\alpha} \circ R_{\beta} = R_{\gamma}$ where $\gamma = \beta \cdot \alpha$ if $\beta = 0$ or $\alpha < \omega$, $\gamma = \beta \cdot (\alpha + 1) 1$ if $0 < \beta < \omega$ and $\alpha \ge \omega$, and $\gamma = \beta \cdot (\alpha + 1)$ if $\alpha, \beta \ge \omega$;
- (ii) If $\alpha > 0$ is limit, then $R_{<\alpha} \circ R_{\beta} = R_{<\gamma}$ where $\gamma = \beta \cdot \alpha$;
- (iii) If $\beta > 0$ is limit, then $R_{\alpha} \circ R_{<\beta} = R_{<\gamma}$ where $\gamma = (<\beta) \cdot \alpha$ if $\alpha < \omega$, and $\gamma = (<\beta) \cdot (\alpha+1)$ otherwise;
- (iv) If $\alpha, \beta > 0$ are limit, then $R_{<\alpha} \circ R_{<\beta} = R_{<\gamma}$ where $\gamma = (<\beta) \cdot \alpha$.

Corollary 1. Let $2 \leq \alpha \leq \omega_1$. Then $R_{<\alpha}$ is a preorder iff α is multiplicatively indecomposable.

Define preorders between \leq_{RK} and \leq_{C} by letting $\leq_0 = \leq_{\text{RK}}$ and $\leq_{1+\alpha} = R_{<\omega^{\omega^{\alpha}}}$ for all $\alpha \leq \omega_1$. So, if α is infinite, $R_{<\alpha} = \leq_{\alpha}$ iff α is an epsilon number. Also $\leq_{\alpha} \circ \leq_{\beta} = \leq_{\gamma}$ where $\gamma = \max(\alpha, \beta)$.

As was known, for any ultrafilter \mathfrak{v} and semigroup S, the set $\{\mathfrak{u} : \mathfrak{u} \leq_{\mathcal{C}} \mathfrak{v}\}$ forms a subsemigroup of βS . This can be expanded to arbitrary first-order models and relations $R_{\leq \alpha}$ as follows.

Proposition 2. For every $\alpha > 1$, ultrafilter \mathfrak{v} , and model \mathfrak{A} of any signature, $\{\mathfrak{u} : \mathfrak{u} R_{<\alpha} \mathfrak{v}\}$ forms a submodel of the model $\beta \mathfrak{A}$ iff α is additively indecomposable. Consequently, for all α , \mathfrak{v} , and \mathfrak{A} , $\{\mathfrak{u} : \mathfrak{u} \leq_{\alpha} \mathfrak{v}\}$ forms a submodel of $\beta \mathfrak{A}$.

Ultrafilter extensions of ω -ary operations can be used to state Ramsey-type results. Let f[X] be the image of X under f, and let $I = \{x \in \omega^{\omega} : x \text{ is increasing}\}$. If $X \subseteq \omega$ and $f : \omega^{\omega} \to Y$, we say that f is constant upward on X iff $|f[X \cap I]| = 1$, and quasi-invertible upward on X iff there exists $g: Y \to \omega$ such that for any infinite $A \subseteq X$ we have $g[f[A^{\omega} \cap I]] \subseteq A$ and $|A \setminus g[f[A^{\omega} \cap I]]| < \omega$. The following refines the characterization of Ramsey ultrafilters as selective ones.

Theorem 3. Let $\mathfrak{u} \in \beta \omega$. Then \mathfrak{u} is \leq_{RK} -minimal iff any continuous $f : \omega^{\omega} \to \omega$ is either constant upward or quasi-invertible upward on some $X \in \mathfrak{u}$.

Nikolai L. Poliakov, HSE University, niknikols0@gmail.com; Denis I. Saveliev (corresponding author): Institute for Information Transmission Problems RAS, d.i.saveliev@gmail.com.