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Abstract—Chimera states, where coherent and incoherent ac-
tivity coexists in homogeneous networks, have been a focus of
synchronization theory studies over many years. In this paper,
we consider dynamical regimes in a ring of phase oscillators
coupled by a cosine kernel using new synchronization criteria
- adaptive coherence measure (ACM). We show that the ACM-
criterion can be successfully applied for phase oscillator net-
works. Our measure allowed us to partition the parameter plane
into regions along collective dynamics. We discovered that, for the
certain parameter sets, there is the bistability between globally
synchronous and chimera states. This bistability allows to control
network dynamics by changing the initial conditions and/or the
external forcing. This shows the potential flexibility in control
over complex network behaviors.

Index Terms—chimera state, phase oscillator networks, bista-
bility, adaptive coherence measure, synchronization

I. INTRODUCTION

Chimera states, where coherent and incoherent activity

coexist in structurally homogeneous networks, has been of

interest to network dynamics and synchronization theory for

many years. Initially, such states were discovered in a non-

locally coupled complex Ginzburg-Landau equation [1] and

with the term ”chimera” appearing in [2] where a ring of

phase oscillators symmetrically coupled by a cosine kernel

was considered. Later, chimeras were also found in a number

of model networks (see, for example, reviews [3, 4]) and

observed experimentally [5–10].

There are several methods for identification of network

coherent regimes and, in particular, chimera state. The simplest

way is to calculate raster plots of network activity, snapshots of

instantaneous distributions of the state variable and diagrams

of the frequency distribution (e.g. [2, 11]). This approach

visually determines the network states for each fixed set of

parameters and initial conditions. For a more automatic and

generalizable parametric search for chimera states, synchro-

nization measures have been proposed. These are Kuramoto

order parameter [2], strength of incoherence [12], and the χ2-

parameter [13]. The Kuramoto order parameter is widely used

for phase oscillator networks, as well as for neural networks

(see, for example, [11, 14, 15]). However, it requires well-

defined phases for the network elements. The strength of

incoherence (in combination with a discontinuity measure)

was originally introduced for relaxation systems. It is sensitive

to two intrinsic method parameter, the number of bins and

the coherence threshold, that must be selected correctly, often

separately for each dynamical regime. Such parameter sensi-

tivity renders this method difficulty to apply. A less common

χ2-parameter is easier to calculate, yet it has disadvantages

that commonly inherent in all these methods. In particular,

these methods do not support automatically partitioning of the

parameter space of neural networks into areas that correspond

to the main dynamic regimes since they confound several of

these regimes. There is also a method proposed in [16] that is

based on the correlation measure and that allows to distinguish

static and travelling chimeras for networks of different nature

yet cannot identify comprehensively their coherent states.

To resolve the issues above, we introduce a new robust uni-

versal approach that allows to identify automatically chimera

states [17]. The approach is based on the adaptive coherence

measure (ACM) which, in fact, is an generalization of the χ2-

parameter. This approach is free from the above-mentioned

drawbacks and can be used to identify correctly and compre-

hensively dynamical regimes in networks: global and cluster

synchronization, chimera states, and travelling waves. We also

note that although the approach was originally created for

spiking neuronal networks [17], it also works well for various

classes of networks and, in particular, for networks of phase

oscillators. To verify this, in this work we consider the a ring

of phase oscillators symmetrically coupled by a cosine kernel

[2] and analyse coherent states of the system.

II. NETWORK DESCRIPTION

To show the applicability of our approach for the phase

oscillator networks, we consider a Kuramoto ring network [2]:

∂φ(x, t)

∂t
= ω−B

2π∑
x′=0

G(x−x′)(sin(φ(x, t)−φ(x′, t)+α)),

(1)

Here x ∈ [0, 2π] is a discrete coordinate of oscillators in the

ring. The total number of oscillators (N ) is equal 256. The
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coupling G(x−x′) between oscillators x and x′ is symmetrical

and depends on the distance between them:

G(x− x′) =
1

2π
(1 +A cos(x− x′)) (2)

Analyzing the dynamical regimes of the network, we choose

A and β (β = π/2 − α) as the control parameters and fixed

the others (ω = 0, B = 1).

III. METHODS

A. Adaptive coherence measure

Let us first describe the adaptive coherence measure. To

construct it, we use, as the basis, the χ2-parameter [13]:

χ2 =
σ2
φ

1
N

∑N
i=1 σ

2
φi

, (3)

where φi = φ(xi, t) is the phase time series of i-th element in

the representative time window and σ2
φ is variance of average

phase of the network φ(t) = 1
N

∑N
i=1 φ(xi, t):

σ2
V = 〈φ2(t)〉t − 〈φ(t)〉2t , (4)

and σ2
φi

is variance of the phase of the i-th element:

σ2
φi

= 〈φ2(xi, t)〉t − 〈φ(xi, t)〉2t . (5)

The χ2-parameter (as well as Kuramoto order parameter

and the strength of incoherence) cannot distinguish travelling

waves, cluster synchronization and chimera states. To resolve

the problem, we make an advance, that permits us to correctly

identify coherent states consisting only of synchronous clusters

firing with given time lags. In fact, computing ACM-parameter

involves solving the following optimization problem (like

it was done for the lag synchronization of two interacting

element [18]):

R2 = max
Δt=(Δt1,Δt2,..,ΔtN )

χ2({φ(xi, t−Δti)}Ni=1), (6)

As a result, we obtain a vector of time lags Δt =
(Δt1,Δt2, ..,ΔtN ) and corresponding values of R2. A num-

ber of unique time lags, let it call L, and the value of R2 will

characterize a dynamical regime (Table I).

Using the ACM-parameter and the number of unique time

lags L, one can scan the parameter space and partition it into

different dynamical regions:

B. Numerical simulations

For numerical integration of the equations (1) we used the

Euler method with a fixed step of 0.025 and total simulation

duration of 200 000 iterations.

Table I
TABLE PRESENTING CLASSIFICATION OF THE DIFFERENT NETWORK

STATES

Regime ACM dimension number
of Δt of clusters

Asynchronous R2 = 0 − −
state

Global R2 = 1 L = 1 L
synchronization

Cluster R2 = 1 1 < L � N L
synchronization

Travelling wave R2 = 1 L = N −
Chimera state 0 < R2 < 1 − −

IV. RESULTS

Applying the ACM-approach to the system (1), we were

able to divide the parameter plane (β,A) into regions with

different coherent states. A two-parameter diagram is shown

in Fig. 1: the green region corresponds to a chimera state

(Fig. 2) and globally synchronous state (Fig. 3) exists in the

yellow one. The solid and dashed lines were taken from Fig. 2

in [2]: the solid line corresponds to the boundary determined

by numerical solution and the dashed line is approximate

boundary obtained from the perturbation theory. One can

see that the ACM-approach provides correct results and the

boundary of the chimera region plotted using it corresponds

well with the numerical boundary calculated in [2], especially

for the smaller values of A.

We further calculated the boundary for the globally syn-

chronous region (that was not done in [2]) and found that

there exists an intersection between the regions in the Fig. 1.

This means that bistability is observed between the chimera

and globally synchronous states that co-exist for the same

parameter set depending only on the initial conditions. The

states corresponding to the intersection region (point “4,5” in

the Fig. 1) are demonstrated in the Fig. 4,5. This bistability

allows to control the state of the ring network (1) by changing

the initial conditions or applying an external forcing.

V. CONCLUSION

In this paper, we show that the ACM-approach can be

successfully used to identify different dynamic regimes and

multistability in phase oscillator networks. We would like

to note that the classical Kuramoto [2] order parameter has

been mainly used for phase oscillator networks, but can

also be applied to neuronal networks under certain specific

circumstances (as, for example, in [11, 14, 15]). The opposite

situation is observed for the ACM parameter: we originally

proposed it for spiking neuronal networks, but it also works

well for networks of various natures and, in particular, for

the networks of phase oscillators. In comparison with the

order parameter, the ACM-parameter is able to distinguish

automatically between chimera states, cluster synchronization,

as well as travelling waves (Table I) and has not internal

method parameters , which makes the calculations simple and

robust.
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Figure 1. Two parameter (β,A) map for ω = 0, B = 1 presenting regions
of dynamical regimes of the ring network (1): chimera state (green), global
synchronization (yellow).There is also a bistability region (light green), where,
depending on the initial conditions, both dynamic modes can be observed. The
solid and dashed lines are taken from Fig. 2 in [2]: the solid line corresponds
to the boundary determined by the numerical solution and the dashed line
is approximate boundary obtained from the perturbation theory. The points
2,3,4,5 correspond to the numbers of the figures that show the diagrams for
each dynamical state of the network (1) for these points.

Figure 2. Chimera state corresponding to the point “2” in the Fig. 1
(A = 0.5, β = 0.03): rasterplot (A), frequency diagram (B) and instantaneous
snapshot (C).

Summing up, we would like to assume that our approach

is universal and is able to reliably determine various coherent

states of networks, distinguishing, for example, cluster and

chimera states, and also, in the case of cluster synchronization,

determine the number and size of synchronous clusters. In

other words, we recommend the ACM parameter to be used

Figure 3. Globally synchronous state corresponding to the point “3” in the
Fig. 1 (A = 0.5, β = 0.2): rasterplot (A), frequency diagram (B) and
instantaneous snapshot (C).

for classification problems of the network dynamical regimes

and parameter space partitioning into areas corresponding to

these regimes.
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