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Abstract

We propose a single chunk model of long-term memory that
combines the basic features of the ACT-R theory and the mul-
tiple trace memory architecture. The pivot point of the devel-
oped theory is a mathematical description of the creation of
new memory traces caused by learning a certain fragment of
information pattern and affected by the fragments of this pat-
tern already retained by the current moment of time. Using
the available psychological and physiological data these con-
structions are justified. The final equation governing the learn-
ing and forgetting processes is constructed in the form of the
differential equation with Caputo type fractional time deriva-
tive. Several characteristic situations of the learning (contin-
uous and discontinuous) and forgetting processes are studied
numerically. In particular, it is demonstrated that, first, the
“learning” and “forgetting” exponents of the corresponding
power laws of the memory fractional dynamics should be re-
garded as independent system parameters. Second, as far as
the spacing effects are concerned, the longer the discontinu-
ous learning process, the longer the time interval within which
a subject remembers the information without its considerable
lost. Besides, the latter relationship is a linear proportionality.

Keywords: human memory; memory trace; chunk; forgetting;
learning; practice; spacing effects; power law; fractional dif-
ferential equations.

Psychological and Physiological Background
There are a number of approaches to understanding and de-
scribing processes in human mind. They belong to differ-
ent levels of abstraction, ranging from neural and biochemi-
cal processes in the brain up to philosophical constructions,
and study its different aspects. In the present work we fo-
cus our attention on the phenomenological (psychological)
description of human memory dealing with it as a whole, i.e.,
without reducing the corresponding mental functions to the
real physiological processes implementing them. A review
of advances made in this scope during the last decades can
be found in a monograph by Anderson (2007) who inspired
the development of the ACT-R concept in cognitive science,
a modern theory about how human cognition works.

The ACT-R theory operates with three types of human
memory, sensory, short-term, and long-term ones (Atkinson
& Shiffrin, 1968) and accepts, in particular, the following ba-
sic postulates.

First, the declarative (long-term) memory is organized in
chunks (Miller, 1956), certain cognitive units related to some
information objects. At the first approximation the learning,
memorizing, and retrieval of a given object proceeds via the
creation and evolution of the corresponding chunk. Naturally,
chunks can interact with one another, in particular, forming

larger composed chunks and, finally, their hierarchical net-
work. The notion of chunk is general, therefore, it is rather
problematic to define it more precisely, for discussion and
history see, e.g., a review by Anderson and Lebiere (1998).

Second, each chunk individually is characterized by its
strength F which determines also the information retention,
namely, the probability of successful retrieval of the corre-
sponding information from a given chunk (Anderson, 1983;
Anderson & Schooler, 1991). Since the classical experiments
of Ebbinghaus (1885/1913) a rather big data-set about the re-
tention ability of human memory has been accumulated for
time scales from several minutes up to a few weeks. It has
been figured out that the memory strength F decays with time
t according to the power-law (Wickelgren, 1972, 1974; An-
derson & Schooler, 1991; Wixted & Ebbesen, 1991, 1997),
i.e., exhibits the asymptotic behavior

F(t) ∝
1
td , (1)

where the exponent d is a certain constant. It should be noted
that, in general, this dependence meets the second Jost’s law,
the increment of the strength decay becomes weaker as time
goes on (see, e.g., a review by Wixted (2004)). Appealing
at least to the data-set collected by Ebbinghaus (1885/1913)
and analyzed by Anderson and Schooler (1991) as well as one
collected and studied by Wixted and Ebbesen (1991, 1997)
the exponent d seems to be rather universal and can be esti-
mated as d ∼ 0.1−0.2.

The third postulate concerns the multiple-trace arrange-
ment of human memory. It assumes that each attempt of
learning and memorizing some information fragment pro-
duces a separate trace m in human memory. So the corre-
sponding cognitive unit, a chunk, is actually a collection {mi}
of many memory traces and its strength F is the sum of their
individual activation levels { fi} (Hintzman, 1986)

F(t) = ∑
mi∈Chunk

fi(t) . (2)

Evidence collected currently in physiology (see, e.g., work by
Yassa and Reagh (2013) and references therein) partly sup-
ports this concept. Its implementation in physiological terms
is reduced to the Multiple Trace Theory (MTT) developed by
Nadel and Moscovitch (1997) appealing to the role of the hip-
pocampus in the encoding of new memory traces as well as
the retrieval of all the previous traces, including remote ones.
The preceding alternative of MTT is the Standard Model of
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Systems Consolidation (SMSC: Squire and Alvarez (1995)).
It assumes the hippocampus to “teach” the cortex a memory
trace strengthening the connectivity between its individual el-
ements over time and, finally, consolidating the memory.

Recently Yassa and Reagh (2013) have proposed a Com-
petitive Trace Theory (CTT) combining elements SMSC and
MTT. It suggests that when a memory is reactivated by a new
cue, the hippocampus acts to re-instantiate the original mem-
ory traces, recombine their elements in the episodic memory,
and add or subtract individual contextual features. As a re-
sult, a new memory trace overlapping with the original ones
is created and ready to be stored in the neocortex. However,
in contrast to MTT, CTT supposes that the memory traces are
not stored in parallel but compete for representation in the
neocortex. Two relative phenomena occur here: consolida-
tion and decontextualization. First, overlapping features in
the memories should not compete for representation and thus
are strengthened, i.e., consolidated. Second, non-overlapping
features should compete with one another resulting in mutual
inhibition and, as a result, memories become decontextual-
ized. Nadel and Moscovitch (1998) proposed the reactivation
of memory traces to strengthen also the links between the
traces too. The concept of such a multi-trace consolidation
can be regarded as the fourth postulate of the ACT-R theory.

As the fifth postulate we note the following. The hip-
pocampus is involved in the “reconstruction” rather than the
“retrieval” of the memory. So, as CTT states, new memory
traces are only partially but not completely overlap with the
original traces. It is due to the hippocampus capability of
supporting rapid encoding of unique experiences by orthogo-
nalizing incoming inputs such that their interference is min-
imized, which is termed pattern separation; the available ev-
idence for this feature was recently discussed by Yassa and
Stark (2011). This pattern separation together with the corre-
sponding pattern completion via creating new memory traces
endows our episodic memory system with richness, associa-
tivity, and flexibility (Yassa & Stark, 2011).

Finally, the ACT-R theory accepts an important general-
ization about expansion (2). It assumes that the individual
activation levels fi(t) of memory traces decreases with time
t also according to the power law and, after formation, their
individual dynamics is mutually independent. Thereby the
strength F(t) of the corresponding chunk is the superposition
(Anderson, 1983; Anderson & Schooler, 1991)

F(t) = ∑
mi∈Chunk

Ci

(t− ti)d , (3)

where {Ci} are some constants and ti is the time moment
when the chunk mi was created. It should be noted that ex-
pression (3) does not take into account the chunk interaction.

Our following constructions will be based on these pos-
tulates. In the present work we will confine our considera-
tion to the dynamics of a single chunk and ignore the effects
of memory consolidation which are likely to be crucial only
on relatively large time scales. Mathematical description of

time

moment of transferring 
a new pattern fragment 

from the working memory 
to the declarative memory 

time

Figure 1: Illustration of the used model for the chunk evo-
lution as new slides are created in order to compensate the
degradation of the previous ones.

the chunk interaction and the memory consolidation are chal-
lenging problems on their own and require individual investi-
gation.

Single Chunk Model
A chunk M is considered to be a collection of traces {m(t ′)}
created in the working memory at time moments {t ′} and
stored in the declarative (long-term) memory. These traces
will be also called slides for reasons apparent below. Let us
assume that the chunk M as a whole contains a certain frag-
ment of information, a pattern P, so all its slides retain differ-
ent fragments of this pattern.

The time evolution of the chunk M as a whole unit is de-
scribed in terms of its strength F(t), the measure of the rel-
ative volume of the pattern pieces that are retrievable at the
current moment of time t (Anderson, 1983, 2007). The in-
dividual evolution of the slides {m(t ′)} is characterized by
similar quantities { f (t, t ′)} depending on the current time t
and the time t ′ when the corresponding slide was created and
stored.

Slide Formation Mechanism
The chunk slides are assumed to be created according to the
following scenario illustrated in Fig. 1. Memory continuously
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looses some fragments of the pattern P. So when at the cur-
rent moment of time t the chunk M as a whole is retrieved
from the declarative memory only some its fragment Pt can
be retrieved, which is characterized by the value F(t) < 1.
Then addition practice or learning is necessary to reconstruct
the initial pattern P. Therefore a new slide m(t) to be created
during this action has to contain, at least, the fragment P\Pt .
In principle, the pattern fragment ∆tP to be stored in m(t) can
include other fragments of the initial pattern P. So in a more
general case the condition ∆tP∩Pt 6= /0 may hold, which is
worthy of individual investigation. In the present work we
confine our consideration to the limit case where

∆tP= P\Pt , (4a)

if the current learning action is enough to create the fragment
m(t) containing ∆tP. However, there could be a situation
when the time interval τ of the learning process before the
slide m(t) to be transfered to the declarative memory is not
enough to do this. Under such conditions we assume that be-
fore transferring the slide m(t) to the declarative memory it is
cut off, i.e., its capacity for new information is reduced and
the saved pattern fragment meets the condition

∆tP⊂ P\Pt . (4b)

In both the cases it is reasonable to measure the capacity C(t)
of the new slide based on the current strength F(t) of the
chunk M . Namely, in case (4a) we set

C(t) = 1−F(t) (5a)

and in case (4b) the slide capacity is calculated appealing to
the notion of attention W paid to learning the pattern piece
P\Pt during the time interval τ. The following ansatz

C(t) = [1−F(t)]
{

1− exp
[
− Wτ

T (F)

]}
(5b)

is used, where T (F) is the time scale characterizing the pro-
cess of learning the pattern ∆tP and given by the expression

T (F) = (ε+F)−α(1−F)1−β
τm . (6)

Here the scale τm characterizes the time interval required for
the working memory to create one slide and the dependence
of the quantity T (F) on F reflects the fact that the higher the
current value F(t), the less the time necessary to learn the
pattern ∆tP completely, the exponents α > 0 and β ∈ (0,1)
specify this dependence. The parameter ε characterizes the
duration of initial creation of the pattern P in the working
memory. If we retrieve the chunk M immediately after this
action its achievable pattern is

Pt+τ = Pt ∪∆tP . (7)

The strength f (t, t) of the slide m(t) created and saved just
now is set equal to unity,

f (t, t ′)
∣∣
t=t ′ = 1 , (8)

which is related directly to the assumption about the reduction
of the slide capacity at the moment of its creation. As time
goes on, the strength of all the slides decreases and without
addition learning the strength F(t) of the chunk M as whole
is written as the sum of all the slides created previously

F(t) = ∑
t ′<t

C(t ′) f (t, t ′) . (9)

Equalities (4), (5), and (9) may be treated as the Bayesian
approximation of the memorizing process.

Individual Slide Dynamics
The given model assumes the slides created previously not
to be affected by learning at the current moment of time. In
other words, after creation their evolution is governed only by
some internal mechanisms. Keeping in mind the results to be
obtained let us write the equation governing the evolution of
a slides m(t ′) in the form

∂ f
∂t

=−a
τ

f b (10)

where a > 0 and b > 1 are some parameters. Equality (8) is
actually the initial condition imposed on the function f (t, t ′).
Its solution is

f (t, t ′) =
[

1+
(t− t ′)

τ0

]−d

for t ≥ t ′ , (11)

where we have introduced the new parameters d = 1/(b−1)
and τ0 = τd/a. The substitution of (11) into (9) yields

F(t) = ∑
t ′<t

C(t ′)
[

1+
(t− t ′)

τ0

]−d

. (12)

It should be noted that this governing equation of the individ-
ual trace dynamics is fair similar to the mathematical model
for a single trace memory proposed by Wickelgren (1974).

Continuous Approximation
Expression (5b) can be regarded as a solution C(ζ)|ζ=τ of the
equation

dC
dζ

= (1−F−C)
W
T

(13)

subject to the initial condition

C|ζ=0 = 0 , (14)

where the values F and T are treated as constants, the variable
W describing the attention to the subject of current learning
is assumed to be a smooth function on time scales about τ.
It enables us to represent the value of C(t), Exp. (5b), as the
cumulative result of infinitesimal increments

C(t) =
∫

dC , (15)

of a certain continuous process, where

dC = (1−F)
W
T

dt and F(t +dt) = F(t)+dC .

2599



This expression would lead exactly to formula (5b) if the time
scale T were independent of F . However, ansatz (5b) has
been chosen rather arbitrary keeping in mind only the basic
features it should possess. So we are free to replace it by
the expression stemming from model (15). The last equality
in model (15) formally coincides with formula (9) except for
the fact that the value F(t) has to decrease additionally due
to time evolution of temporal elements created previously.
However, all the “microscopic” time scales, in particular, τ0
and τm, are related directly to the interval within that a new
slide is created in the working memory and, then, transfered
to the declarative memory. It enables us to ignore this de-
crease in the value F(t) during the time interval τ. As a result
expression (12) can be reduced to the following integral

F(t) =
t∫

−∞

[1−F(t ′)]
W (t ′)

T [F(t ′)]

[
1+

(t− t ′)
τ0

]−d

dt ′ . (16)

Moreover, due to the integral∫ t

0

1
ζd dζ

converging at the lower boundary ζ = 0 for the exponent d <
1 we can replace kernel (12) by the corresponding power-law
kernel [

1+
(t− t ′)

τ0

]−d

⇒
τd

0
(t− t ′)d . (17)

After this replacement expression (16) reads

F(t) =
t∫

−∞

[1−F(t ′)]
W (t ′)

T [F(t ′)]
τd

0
(t− t ′)d dt ′ . (18a)

or using ansatz (6)

F(t) =
1

τ
1−d
m

t∫
−∞

[ε+F(t ′)]α[1−F(t ′)]βW (t ′)
1

(t− t ′)d dt ′ .

(18b)
In deriving expression (18b) we have aggregated the ratio
(τ0/τm)

d into the quantity W . So, first, the integral equa-
tion (18a) contains only one microscopic time scale τm re-
garded as a certain model parameter. Second, the dimension-
less quantity W (t) describes the attention to the subject during
the learning process. If W = 1 then the given pattern P can be
learned completely for a time interval about τ.

Finalizing the given construction we will assume that the
learning process was initiated at time t = 0 and before it no
information about the pattern P was available, i.e., for t < 0
the value F(t)= 0. In this case the integral equation (18b) can
be rewritten in the form of the following differential equation
with time fractional derivative of the Caputo type

τ
(1−d)
m ·CD(1−d)F = (ε+F)g(1−F)γW (t) . (19)

It is the desired governing equation for learning and forgetting
processes.
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Figure 2: The accepted ansatz for the dependence of the
learning rate L(F,W ) (in dimensionless units) on the strength
F of a given chunk. The used approximation for the attention
quantity W (F) depending on the chunk strength is shown in
inset. The values of ε = 0.01, α = 0.5, β = 0.1, and Fc = 0.95
were used in constructing the present curve.

In order to avoid some artifacts in numerical simulation we
will accept an additional assumption that it is not possible to
get strictly the limit value of the chunk strength F = 1 by
learning a subject. Indeed, the closer the chunk strength to
unity, the more attention is necessary for a human to recog-
nized which piece of information is unknown for him. As a
result, we introduce a certain critical value Fc ' 1 such that,
when the chunk strength F exceeds it, F > Fc, a human con-
siders the success of learning to be achieved and it attention
to the learned subjects disappears, i.e., W (F) = 0 for F > Fc.
It is illustrated in Fig. 2.

Results and Discussion
The characteristic features of the system dynamics were stud-
ied numerically using the explicit 2-FLMM algorithm of sec-
ond order (Galeone & Garrappa, 2009) for solving equa-
tion (19). Figure 3 presents some of the obtained results.

Fractional Dynamics of Forgetting
Plot I (Fig. 3) shows the forgetting dynamics under the “ba-
sic” conditions matching the following hypothetical situation.
At the initial moment of time t = 0, a subject starts to learn
continuously an unknown for him information pattern being
retained in a single chunk and at time t = TL ends this process
when the chunk strength gets its limit value Fc ' 1. As time
goes on, the chunk strength F(t) decreases, which specifies
the decay of retrievable information. As should be expected,
the asymptotics of F(t) is of the power law and looks like a
straight line on the log-log scale plot. Naturally, in a certain
neighborhood QL of the time moment t = TL this asymptotics
does not hold. However, for small values of the exponent d
(for d = 0.2 in Plot I) this neighborhood is narrow and be-
comes actually invisible in approximating experimental data
even with weak scattering.
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Figure 3: Some results of numerical simulation. First, it is the dynamics of forgetting (I) and learning (II) under the “basic”
conditions when a subject learns an unknown information continuously until he gets the local (temporal) success in time TL.
Second, it is the spacing effects in discontinuous learning (IIIa) and the following forgetting (IIIb). In this case the subject
learns an unknown information via a sequence of trials of a fixed duration until he gets the final success at a certain moment of
time TL. Naturally, the longer the time spacing between two successive trials, the larger the number NL of trials and the longer
the total time interval TL are necessary for this. In simulations the following parameters ε = 0.01, α = 0.5, β = 0.1, Fc = 0.95,
dt = 0.001, and TL|d=0.2 = 1.70, TL|d=0.5 = 1.52 were used as a common setup, the other individual values are shown in the
corresponding plots.

Fractional Dynamics of Continuous Learning

Plot II exhibits the learning dynamics under the same “basic”
conditions. The growth of the chunk strength F(t) is visual-
ized again in the log-log scale for various values of the pa-
rameters determining how the learning rate L(F,W ) changes
during the process (they are given in the inset). As seen, the
function F(t) strictly is not of the power law. However, if it is
reconstructed from some set of scattered experimental points
as the best approximation within a certain class of functions,
a power law fit (linear ansatz in the log-log scale) may be ac-
cepted as a relevant model. It allows us to introduce an effec-
tive exponent dL of the approximation F(t) ∝ tdL . Appealing
again to Plot II, we draw a conclusion that this effective ex-
ponent depends not only on the “forgetting” exponent d but
also on the other system parameters. Thereby, in trying to

determine the set of quantities required for characterizing hu-
man long-term memory, the “forgetting” and “learning” ex-
ponents, d and dL, may be regarded as independent parame-
ters.

Spacing effects

Plots IIIa and IIIb illustrate the found results in the case mim-
icking the discontinuous learning process. It again assumes a
subject to start learning an initially unknown information pat-
tern being retained in one chunk during the process, however,
now he does not do this continuously. Instead, the learning
proceeds via a sequence of trials of a fixed duration that are
separated by some time gap (spacing) until the subject gets
the success at a certain time moment TL. Naturally, the longer
the spacing, the longer the total time TL as well as the larger

2601



the number NL of trials required for this. So, in order to com-
pare their characteristic properties let us renormalize the time
scale in such a way that the learning process end at t = 1 in
dimensionless units, in other words, the time is measured in
units of TL. In this case, as seen in Plot IIIa and IIIb, the main
characteristics of the shown processes become rather similar
with respect to the dynamics of learning and forgetting. This
result poses a question about optimizing a learning process
by dividing it into rather short trials separated by relatively
long time intervals. This effect is also called the distributed
practice, an analysis of available experimental data can found,
e.g., in review by Cepeda, Pashler, Vul, Wixted, and Rohrer
(2006) and Cepeda et al. (2009) as well. At least, within the
framework of the present fair simple model an increase of
the time spacing gives rise, on one hand, to the growth of
the learning duration but, on the other hand, enables one to
remember this information for a longer time without its con-
siderable lost.

General Comments
As far as the theoretical aspects of the present research are
concerned, we note appealing to the obtained results that the
multiple trace concept of memory architecture requires an in-
dividual mathematical formalism irreducible to the classical
notions created in physics. In particular, even at the “micro-
scopic” level dealing with slides (traces) the system dynamics
is not reduced to the motion in a certain phase space but con-
tinuous generation of such phase spaces and their interaction
with one another become the key elements of the correspond-
ing theory.

Besides, the governing equation (19) admits the following
interpretation. Its left-hand side describes “internal” evolu-
tion of human memory on its own, whereas the right-hand
side plays the role of “sources” generating new elements of
memory. This approach can enhance the development of hu-
man memory theory by singling out the phenomena to be ad-
dressed.
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