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1. EXAMPLE OF TEXT COLLECTION: 17685 ABSTRACTS FROM
17 SPRINGER JOURNALS IN DATA SCIENCE (1998-2017)

1. Pattern Analysis and Applications (V. 1 /1998 – V. 20 /2017)

2. Journal of Classification (V. 15 /1998 – V. 34 /2017)

3. Annals of Mathematics & Artificial Intelligence (23/1998 - 80/2017)

4. Social Network Analysis and Mining (V.1/2011—V. 7/2017)

….

17. Machine Learning (V. 30/1998—V.106/2017)
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CHALLENGE
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● Given: 17685 abstracts from 17 Springer journals in Data Science (1998-2017)

● Wanted: Provide a brief description of main contents

● I know of 5 ways for doing that using computer:

○ 1. Content-analysis 

○ 2. Summarization 

○ 3. Co-citation and mutual citation graphs

○ 4. Topic modeling 

○ 5. Taxonomic content-analysis (here)



METHOD
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● Given: 17685 abstracts from 17 Springer journals in Data Science (1998-2017)

● Wanted: Provide a brief description of main contents

● Taxonomic content-analysis – proposed here

○ 1. Find (build) a taxonomy of the domain (Data science)

○ 2.Take the 317 taxonomy leaf concepts as units of the analysis

○ 3. Compute 17685317 relevance matrix “text-to-leaf_concept”

○ 4. Find fuzzy clusters of leaf concepts

○ 5. Generalize a fuzzy cluster by optimally lifting it in the taxonomy tree 
to a head subject

○ 6. Conceptualize the result



TAXONOMY 1: DATA SCIENCE ITEMS IN ACM  CCS
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DS TAXONOMY  LEAF  SUBJECTS
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DS  IN  ACM COMPUTING CLASSIFICATION SYSTEM, LOWER RANKS
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DATA SCIENCE TAXONOMY (FROLOV  ET  AL.  2018)

● Based on Classification of Computing Systems by ACM (456 

items; 317 are lowest layer subjects (leaves)
https://www.hse.ru/mirror/pubs/share/213924179
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3. Leaf topic – to – text Relevance Matrix:
Annotated Suffix Tree (AST)

AST method (Pampapathi et al. 2006, Mirkin, Chernyak, 2014) 

 matrix R = (Rvt) 317х17685

Relevance index matrix: taxonomy_leaf_topic x text

AST: a way to keep text fragments (suffixes) and their 

frequencies
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String ABCBA

AST INSTANCE
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Advantages of Annotated Suffix Trees

● No pre-processing (lemmatization, stemming) needed

● Admits random errors in texts

RELEVANCE INDEX: SUMMARY CONDITIONAL PROBABILITY OF 
NEXT SYMBOL IN MAXIMAL ALIGNED FRAGMENTS
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4. FINDING THEMATIC FUZZY CLUSTERS

• Convert rectangle topic-to-text relevance matrix R into square topic-

to-topic co-relevance matrix C

• Apply Laplacian normalization B=L(C) to sharpen the cluster 

structure in C

• Fuzzy clustering in the space of eigen-vectors of B=L(C) [EigenMap

(Belkin, Niyogi, 2003), FADDIS (Mirkin, Nascimento, 2012)]
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CO-RELEVANCE MATRIX 317317

• Given T V R=(rvt), define V V   C=(cvw),  𝑐𝑣𝑤 = σ𝑡=1
𝑇 rv𝑡 rwt/nt

• nt =  number of leaf subjects v such that rtv > 0.2 

(topics relevant to text v)
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# Texts nt = # Relevant subjects

1237 
2353 
7114
6124
857

0 [attention to be given]
1
2 – 4
5 – 11
12 or more



FADDIS METHOD (2012, IN HOUSE): ONE CLUSTER AT A TIME

• Minu, ξ t,t∈T (btt− ξutut)
2 

• Equivalent to maximum of Rayleigh quotient (max eigenvalue)

Max uBuT/(uTu)

• Spectral approach (Shi, Malik, 2000): find min eigenvalue and its 
vector, adjust the latter to fuzzy membership

• To make consistent [max], apply pseudo-inverse transformation to B

• Found 6 fuzzy clusters of which 3 are more or less homogeneous: L-
Machine Learning, C- Clustering, and I – Information 
Retrieval
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LAPLACIAN PSEUDO-INVERSE (LAPIN):

• Given B, convert into L+

D=diag(B*1N)

B                          L = I - D-1/2BD-1/2                           L+

L+ = pinv(L)
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Cluster L: Learning Cluster C: Clustering 
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CLUSTER R “RETRIEVAL”:  UI ≥ 0.15
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0.211 & 3.4.2.1. & query representation
0.207 & 5.1.3.2.1. & image representations
0.194 & 5.1.3.2.2. & shape representations
0.194 & 5.2.3.6.2.1 & tensor representation
0.191 & 5.2.3.3.3.2 & fuzzy representation
0.187 & 3.1.1.5.3. & data provenance
0.173 & 2.1.1.5. & equational models
0.173 & 3.4.6.5. & presentation of retrieval results
0.165 & 5.1.3.1.3. & video segmentation
0.155 & 5.1.3.1.2. & image segmentation



“TO GENERALIZE”   
ACCORDING TO MERRIAM–WEBSTER (USA)

● A meaning:

○ ``to give a general form to'' 

○ ``to derive or induce (a general conception or 

principle) from particulars'' 
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GENERALIZATION: APPROPRIATELY LIFTING CLUSTERS 
TO COMMON ROOT CONCEPTS

Given a taxonomy and a crisp leaf cluster, lift the leaves to a higher rank 

node: (A1, A2, A3, A4, B1) => (A), B1 disregarded as an offshoot.
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GENERALIZE: GIVEN 5 LEAVES IN A 
CLUSTER, WHERE TO LIFT THAT? OPTION А21

Head subject (А)

Gap



GENERALIZE: GIVEN 5 LEAVES IN A CLUSTER, 
WHERE TO LIFT THAT? OPTION B
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Head subject (B)

Gap Offshoot



MINIMIZE   THE  PENALTY!

Penalty:

#Head_Subject + #Gap + #Offshoot

Penalty at option A: 1+4

Penalty at option B: 1+  + 
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ALGORITHM PARGENFS:

Parsimonious generalization

Output: set of head subjects Н, minimizing

Penalties: λ – for a gap, γ for an offshoot, 1 for a head subject

I – leaf set of the taxonomy rooted tree,

u(h) – query fuzzy set membership function
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TCAN   SOFTWARE

•GOT package (under renovation)

• Includes
• Relevance and co-relevance matrices
• FADDIS clustering (including LAPIN)
• Parsimonious lifting
• Visualization of taxonomy and lifting results

•Site URL:  https://github.com/dmitsf/GOT

•Technical documentation: https://got-docs.readthedocs.io/
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APPLYING GOT  software TO the abstracts sample

● Lifting parameters (according to structure of DST)

● gap penalty: λ=0.1,

● offshoot penalty: γ=0.9

● 3 out of 6 clusters are interpretable (learning L, retrieval R, clustering C)

● Each of L, R, and C clusters is lifted with ParGenFS
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Cluster L lifting:

Head subjects: {Machine learning,

Machine learning theory, Learning to rank}
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TENDENCIES OF DATA SCIENCE RESEARCH (PARTLY)

● A page long description 

according to TCAN
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TENDENCIES OF DATA SCIENCE RESEARCH (PARTLY)

● Three clusters out of six:

○ Learning

○ Information retrieval

○ Clustering
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CLUSTER LIFTING  RESULTS SUGGEST, 1:

● “Learning”  lifted: Conceptualization

❑ main work  still on theory and method rather than 

applications. 

❑ Expanding from  learning subsets and partitions 

towards learning of ranks and rankings. 

❑ Many subareas are not covered by publications.
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CLUSTER LIFTING RESULTS SUGGEST 2:

● “Information retrieval” lifted: Conceptualization

● Head subjects: 

(a) Information Systems, (b) Computer Vision

❑ Text management

❑ Moving from text to embrace images and video. 

❑ Ways for structuring visual information probably 

leading to a future "wordnet" for images
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CLUSTER LIFTING RESULTS SUGGEST 3:

● “Clustering” cluster C lifted: Conceptualization

❑ 16 (!) head subjects, to be raised to higher ranks in Taxonomy of 

Data Science 

❑ Should be lifted in the taxonomy from auxiliary roles to a main 

concept, and instrument, in knowledge engineering. 
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COLLECTION 2: ABSTRACTS FROM SPRINGER И

ELSEVIER, GOOGLE OUTPUTS  TO QUERIES}

• Queries:  clustering, machine learning, neural networks, algorithm, 

classification, information retrieval, natural language processing, 

software, computing, pattern recognition, deep learning, 

probabilistic, artificial intelligence, support vector, Bayesian, 

regression, search engine

• Collection 2: 26 799 abstracts from 80 journals 1971-2019
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OTHER APPROACHES TO THE CHALLENGE
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● Given: 17685 abstracts from 17 Springer journals in Data Science (1998-2017)

● Wanted: Provide a brief description of main contents

● Other approaches:

○ 1. Conventional content-analysis

○ 2. Summarization 

○ 3. Co-citation and mutual citation graphs

○ 4. Topic modeling



APPROACH 1: 1. CONVENTIONAL CONTENT-ANALYSIS
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● Given: 17685 abstracts from 17 Springer journals in Data Science (1998-2017)

● Wanted: Provide a brief description of main contents

● (http://www.audiencedialogue.net/kya16a.html)

Content analysis is a method for summarizing any form of content by 

counting various aspects of the content, like user-specified words or 

concepts.

What for? For comparisons: 

“27% of programs on Radio XXX in April 2017 mentioned at least one aspect 

of peacebuilding, compared with only 3% of the programs in 2010 [or with 

only 3% of the programs on Radio YYY]."

http://www.audiencedialogue.net/kya16a.html


APPROACH 2: SUMMARIZATION
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● Given: 17685 abstracts from 17 Springer journals in Data Science (1998-2017)

● Wanted: Provide a brief description of main contents

● 2. Summarization 

○ Extractive summarization:  Automatic selection of  “key” sentences from 

text

○ Abstractive summarization: Deep learning using Recurrent NN and 

Convolutional NN for text embedding in vector spaces – seems a very 

promising direction for the future.



APPROACH 3: CITATION AND CO-CITATION GRAPHS
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● Given: 17685 abstracts from 17 Springer journals in Data Science (1998-2017)

● Wanted: Provide a brief description of main contents

● 2. Graph of co-citation or mutual citation between papers or 
authors: 

● papers A, B, C
● A List of references:                           B list of references                  C list of references

1.B, 2. X, 3.Y, 4. Z, 5. D                      1.A, 2. E, 3.Y, 4. Z, 5. F                   1.B, 2. Y, 3.F, 4. E

Mutual citation                                                                    Co-Citation

A                  B                                                                A        2      B

2          3

C                                                                                     C



APPROACH 3: EXAMPLE
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● Co-citation or citation graph between papers or authors: 
cluster analysis

● Example: Cluster “Information retrieval” Chen, Ibekwe‐SanJuan, Hou 
(2010):

○ prominent members of a cluster as the intellectual base
(books by G. Salton and C. Van Rijsbergen, and a paper by S. 
Robertson)

○ themes identified in the citers of the cluster as research 
fronts (``information retrieval'', ``probabilistic model'', 
``query expansion'', ``using heterogeneous thesauri‘’) 



ПОДХОД 4: ТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
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● Given: 17685 abstracts from 17 Springer journals in Data Science (1998-2017)

● Wanted: Provide a brief description of main contents

● Data:      Probability(word/text)

● Model:    Matrix Factorization

Pr (word/text)=σ𝑡𝑜𝑝𝑖𝑐 Pr(word/topic)∗ Pr(topic/text)



4. EXAMPLE: TOPIC MODELING (MUCH POPULAR),1
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● 1 Information retrieval?

0.018*"software", 0.018*"inform", 0.013*"query", 0.012*"retrieve",

0.012*"study", 0.011*"develop", 0.011*"product", 0.010*"document",

0.010*"user", 0.009*"engine", 0.009*"research", 0.008*"model",

0.008*"approach", 0.008*"search", 0.008*"busy", 0.008*"knowledge",

0.007*"manage", 0.007*"service", 0.006*"semantic", 0.006*"provide"

● 2 Text and images?

0.020*"image", 0.012*"language", 0.010*"model", 0.010*"retrieve",

0.010*"feature", 0.009*"propose", 0.009*"method", 0.009*"approach",

0.008*"inform", 0.008*"recognition", 0.008*"paper", 0.007*"process",

0.007*"network", 0.007*"base", 0.006*"present", 0.006*"result",

0.006*"differ", 0.006*"system"



4. TOPIC MODELING (MUCH POPULAR),2
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3 Classifiers? 
0.018*"classify", 0. 016*"feature", 0.013*"method", 0.011*"classification",
0.011*"result", 0.010*"data", 0.009*"perform", 0.009*"accuracy",
0.009*"propose", 0.009*"model", 0.009*"recognition", 0.008*"base",
0.007*"image", 0.007*"study", 0.007*"differ", 0.006*"extract",
0.006*"predict", 0.006*"pattern", 0.006*"inform"
● 4 Clusters in networks?
0.013*"algorithm", 0.012*"propose", 0.012*"cluster", 0.010*"graph",
0.009*"method", 0.009*"base", 0.008*"paper", 0.008*"result",
0.008*"inform", 0.007*"data", 0.006*"function", 0.006*"network",
0.006*"model"



SAME  APPROACH  TO  OTHER  COLLECTIONS

• «Visit to a restaurant» (18036 user reviews of restaurants and cafee in 

Moscow, in Russian, TripAdvisor, 2019, 267 leaf subjects)

• «Car» (35785 user reviews of cars)

• «Research journal contents» (abstracts of all 461 papers “Journal of 

Classification” 1984-2019, leaf subjects 106)

• Results found, but nothing sensational; probably, our in-house taxonomies lack substance
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CONCLUSION

• TCAN explicitly involves the contents and structure of a taxonomy of the 
domain

• There is an original component: Parsimonious lifting as a model of 
generalization

• TCAN’s use much depends on the usage of taxonomies in the 
development of specific domains

• Future work: use of the maximum likelihood criterion in the problem of 
optimal lifting

• Future work: Use of the optimal lifting in other applications (reconstruction 
of the history of individual genes in phylogenetic trees, optimization of the 
targeted advertising over Internet).
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