Young Researchers in Algebraic Number Theory 2021

Chow dilogarithm and reciprocity laws

Vasily Bolbachan

Higher School of Economics, Moscow, Russia, Math department

August 29, 2021

◆ロト ◆昼下 ◆臣下 ◆臣下 三国王 のへで

Conventions

Fix some algebraically closed field k of characteristic zero.
 I work modulo torsion. So implicitly any abelian group is tensored by Q. I write F[×] instead of F[×] ⊗ Q etc.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Definition of Bloch-Wigner dilogarithm

The Bloch-Wigner dilogarithm is defined by the following formula

$$\mathcal{L}_2(z) = \Im(\text{Li}_2(z)) + \arg(1-z)\log|z|.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition of Bloch-Wigner dilogarithm

The Bloch-Wigner dilogarithm is defined by the following formula

$$\mathcal{L}_2(z) = \Im(\text{Li}_2(z)) + \arg(1-z)\log|z|.$$

It satisfies the following equation called Abel five-term relation:

$$\mathcal{L}_2(x) - \mathcal{L}_2(y) + \mathcal{L}_2(y/x) + + \mathcal{L}_2((1-x^{-1})/(1-y^{-1})) - \mathcal{L}_2((1-x)/(1-y)) = 0.$$

Definition of pre-Bloch group

Definition

For any field F the pre-Bloch group $\mathcal{P}(F)$ is defined as the quotient of the free vector space generated by symbols $\{x\}_2, x \in F \setminus \{0, 1\}$, by the following Abel five-term relations:

$$\{x\}_2 - \{y\}_2 + \{y/x\}_2 + \{(1 - x^{-1})/(1 - y^{-1})\} - \\ -\{(1 - x)/(1 - y)\}_2 = 0,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

where $x, y \in F \setminus \{0, 1\}, x \neq y$.

Properties of pre-Bloch group

There is a canonical map *L̃*₂: *P*(*F*) → ℝ given by the formula {*x*}₂ → *L*₂(*x*).

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Properties of pre-Bloch group

- There is a canonical map *L̃*₂: *P*(*F*) → ℝ given by the formula {*x*}₂ → *L*₂(*x*).
- When F is a number field this map is believed to be injective.

Polylogarithmic complex: definition

Let F be an arbitrary field. Consider the following complexes placed in degrees [1, 2]:

$$\Gamma(F,2)\colon \mathcal{P}(F) \xrightarrow{\delta_2} \Lambda^2 F^{\times}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Here the differential is given by the formula $\delta_2(\{x\}_2) = x \wedge (1-x).$

Polylogarithmic complex: definition

Let F be an arbitrary field. Consider the following complexes placed in degrees [1, 2]:

$$\Gamma(F,2)\colon \mathcal{P}(F) \xrightarrow{\delta_2} \Lambda^2 F^{\times}$$

Here the differential is given by the formula $\delta_2(\{x\}_2) = x \wedge (1-x).$

$$\Gamma_2(F,3)\colon \mathcal{P}(F)\otimes F^{\times} \xrightarrow{\delta_3} \Lambda^3 F^{\times}$$

Here the differential is given by the formula $\delta_2({x}_2 \otimes y) = x \wedge (1-x) \wedge y.$

シック・1回、4回×4回×4回×4回×

Let (F, ν) be a discrete valution field. A. Goncharov defined a mopphism of complexes $\partial_{\nu} \colon \Gamma_2(F, 3) \to \Gamma(\overline{F}_{\nu}, 2)$ called tame-symbol map.

$$\mathcal{P}(F)\otimes F^{ imes} \stackrel{\delta_3}{\longrightarrow} \Lambda^3 F^{ imes} \ egin{array}{ccc} & & & & & \ \partial_
u & & & & \ & & & \ & & & \ \partial_
u & & & & \ & & & \ & & & \ \mathcal{P}(\overline{F}_
u) & \stackrel{\delta_2}{\longrightarrow} \Lambda^2 \overline{F}_
u^{ imes} \end{array}$$

Denote by **Fields**_d the category of finitely generated extensions of k of transcendent degree d. For a field $F \in \mathbf{Fields}_1$ denote by val(F) the set of all discrete valuations of F. Denote $TotRes_F = \sum_{\nu \in val(F)} \partial_{\nu}$.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

A. Suslin has proved that the map *TotRes_F* is zero on the 2-nd cohomology.

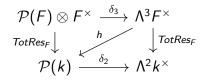
▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

- A. Suslin has proved that the map *TotRes_F* is zero on the 2-nd cohomology.
- D. Rudenko has proved that *TotRes_F* is null homotopic. [Rudenko, 2021]

Strong reciprocity law: definition

Definition

Strong reciprocity law on a field $F \in \mathbf{Fields}_1$ is a homotopy h between $TotRes_F$ vanishing on the subgroup $\Lambda^2 F^{\times} \wedge k^{\times}$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Strong reciprocity laws: properties

For a field F ∈ Fields₁ denote by SRL(F) the set of all strong reciprocity laws on F.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Strong reciprocity laws: properties

- For a field F ∈ Fields₁ denote by SRL(F) the set of all strong reciprocity laws on F.
- ▶ If $j: F_1 \to F_2$ is an embedding, there is a natural map $j^*: SRL(F_2) \to SRL(F_1)$ given by the formula $j^*(h_2)(a) = h_2(a)/[F_2:F_1]$, where $h \in SRL(F_2)$ and $a \in \Lambda^3 F_1^{\times}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Strong reciprocity laws: properties

- For a field F ∈ Fields₁ denote by SRL(F) the set of all strong reciprocity laws on F.
- ▶ If $j: F_1 \to F_2$ is an embedding, there is a natural map $j^*: SRL(F_2) \to SRL(F_1)$ given by the formula $j^*(h_2)(a) = h_2(a)/[F_2:F_1]$, where $h \in SRL(F_2)$ and $a \in \Lambda^3 F_1^{\times}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

One can show that in this way get a functor SRL: Fields₁ → Set. Strong reciprocity law: the case of k(t)

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Strong reciprocity law is unique.

Strong reciprocity law: the case of k(t)

Strong reciprocity law is unique.

It is given by the following formulas:

$$h_{k(t)}((t-a)\wedge(t-b)\wedge(t-c))=\left\{rac{c-a}{c-b}
ight\}_2 h_{k(t)}((at+b)\wedge(ct+b)\wedge e)=0,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

where $a, b, c, d, e \in k$.

• We denote it by $\mathcal{H}_{k(t)}$.

Main theorem

On any field $F \in \mathbf{Fields}_1$ one can choose a strong reciprocity law \mathcal{H}_F such that for any embedding $j \colon F_1 \hookrightarrow F_2$ we have $j^*(\mathcal{H}_{F_2}) = \mathcal{H}_{F_1}$. Moreover, the family of strong reciprocity laws $\mathcal{H}_F, F \in \mathbf{Fields}_1$ is uniquely determined by the propriety stated above.

Norm map

Theorem (about existence of norm map)

For any field extension $F_1 \subset F_2$ there is a canonical norm map N_{F_2/F_1} : $SRL(F_1) \rightarrow SRL(F_2)$ satisfying the following conditions:

▶ If
$$F_1 \subset F_2 \subset F_3$$
, then $N_{F_3/F_1} = N_{F_3/F_2} \circ N_{F_2/F_1}$

- ▶ The composition $SRL(F_1) \xrightarrow{N_{F_2/F_1}} SRL(F_2) \xrightarrow{j^*} SRL(F_1)$ is identical.
- If j: k(t) → F an embedding then the strong reciprocity law N_{F/k(t)}(H_{k(t)}) does not depend on j.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Let $F \in Fields_1$. Choose a finite extension $j: k(t) \to F$.

Let F ∈ Fields₁. Choose a finite extension j: k(t) → F.
Define the strong reciprocity law H_F by the formula N_{F/k(t)}(H_{k(t)}).

• Let $F \in Fields_1$. Choose a finite extension $j: k(t) \to F$.

- Define the strong reciprocity law H_F by the formula N_{F/k(t)}(H_{k(t)}).
- It does not depend on j.

- Let $F \in Fields_1$. Choose a finite extension $j: k(t) \to F$.
- Define the strong reciprocity law H_F by the formula N_{F/k(t)}(H_{k(t)}).
- It does not depend on j.
- The property $j^*(\mathcal{H}_{F_2}) = \mathcal{H}_{F_1}$ is easy follows from the previous theorem.

Definition of a system of strong reciprocity laws

Let $L \in \mathbf{Fields}_2$. Denote by dval(L) the set of all divisorial discrete valuations.

Definition of a system of strong reciprocity laws

Let $L \in \mathbf{Fields}_2$. Denote by dval(L) the set of all divisorial discrete valuations.

Definition

A system of a strong reciprocity laws σ on L is a choose of $\sigma_{\nu} \in SRL(\overline{L}_{\nu})$ for any $\nu \in dval(L)$, such that for any $b \in \Lambda^4 L^{\times}$, the following formula holds:

$$\sum_{
u\in d extsf{val}(L)} \sigma_
u(\partial_
u(b)) = 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Main lemma: preliminaries 1

For a field L ∈ Fields₂ denote by SOSRL the set of all systems of strong reciprocity laws on L. It can be extended to a contravariant functor SOSRL: Fields₂ → Set.

Main lemma: preliminaries 1

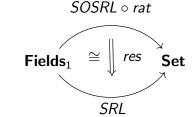
- For a field L ∈ Fields₂ denote by SOSRL the set of all systems of strong reciprocity laws on L. It can be extended to a contravariant functor SOSRL: Fields₂ → Set.
- Denote by rat: Fields₁ → Fields₂ a functor given by the formula F → F(t).

Main lemma

Denote by *res* the natural transformation associating to $\sigma \in SOSRL(F(t))$ a strong reciprocity law $\sigma_{\nu_{\infty}}$, where ν_{∞} is the valuation of the field F(t) corresponding to the point $\infty \in \mathbb{P}_{F}^{1}$.

Main lemma

Denote by *res* the natural transformation associating to $\sigma \in SOSRL(F(t))$ a strong reciprocity law $\sigma_{\nu_{\infty}}$, where ν_{∞} is the valuation of the field F(t) corresponding to the point $\infty \in \mathbb{P}_{F}^{1}$.



▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Main lemma

res is an isomorphism of functors.

Definition of norm map

Let j: F₁ → F₂ be an extension. Choose some generator a of this extension. Let p_a ∈ F₁[t] be its minimal polynomial. Denote by v_a ∈ davl(F₁(t)) the corresponding divisorial valuation.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Definition of norm map

- Let j: F₁ → F₂ be an extension. Choose some generator a of this extension. Let p_a ∈ F₁[t] be its minimal polynomial. Denote by v_a ∈ davl(F₁(t)) the corresponding divisorial valuation.
- ▶ Define the map $N_{F_2/F_1,a}$: $SRL(F_1) \rightarrow SRL(F_2)$ by the formula $N_{F_2/F_1,a}(h) = (res_{F_1}^{-1}(h))_{\sigma_a}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Definition of norm map

- Let j: F₁ → F₂ be an extension. Choose some generator a of this extension. Let p_a ∈ F₁[t] be its minimal polynomial. Denote by v_a ∈ davl(F₁(t)) the corresponding divisorial valuation.
- ▶ Define the map $N_{F_2/F_1,a}$: $SRL(F_1) \rightarrow SRL(F_2)$ by the formula $N_{F_2/F_1,a}(h) = (res_{F_1}^{-1}(h))_{\sigma_a}$.
- The fact that N_{F2/F1,a} does not depend on a and all the properties from the theorem about norm map can be proved similarly to the construction of norm map on Milnor k-theory.

Two-dimensional reciprocity law

Corollary 1

Let $L \in \mathbf{Fields}_2$. The association to any $\nu \in dval(L)$ the canonical strong reciprocity law $\mathcal{H}_{\overline{L}_{\nu}}$ is a system of strong reciprocity laws.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Two-dimensional reciprocity law

Corollary 1

Let $L \in \mathbf{Fields}_2$. The association to any $\nu \in dval(L)$ the canonical strong reciprocity law $\mathcal{H}_{\overline{L}_{\nu}}$ is a system of strong reciprocity laws.

In other words, for any $b \in \Lambda^4 L^{\times}$ the following equality holds:

$$\sum_{
u\in d extsf{val}(L)} \mathcal{H}_{\overline{L}_
u} \partial_
u(b) = 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Definition of Chow dilogarithm

Let X be a smooth projective curve over \mathbb{C} and $f_1, f_2, f_3 \in \mathbb{C}(X)^{\times}$ be three non-zero rational functions on X. Chow dilogarithm is defined by the following formula:

$$\mathcal{CL}_2(X|f_1, f_2, f_3) = \frac{1}{2\pi i} \int_{X(\mathbb{C})} r_2(f_1, f_2, f_3),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $r_2(f_1, f_2, f_3)$ is some explicitly defined 2-distribution.

Chow dilogarithm is expressible in terms of Bloch-Wigner dilogarithm

Let $k = \mathbb{C}$. For any smooth projective curve over \mathbb{C} we get the map $\mathcal{H}_{\mathbb{C}(X)} \colon \Lambda^3 \mathbb{C}(X)^{\times} \to \mathcal{P}(\mathbb{C})$. From the other side we have the map $\widetilde{\mathcal{L}}_2 \colon \mathcal{P}(\mathbb{C}) \to \mathbb{R}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Chow dilogarithm is expressible in terms of Bloch-Wigner dilogarithm

Let $k = \mathbb{C}$. For any smooth projective curve over \mathbb{C} we get the map $\mathcal{H}_{\mathbb{C}(X)} \colon \Lambda^3 \mathbb{C}(X)^{\times} \to \mathcal{P}(\mathbb{C})$. From the other side we have the map $\widetilde{\mathcal{L}}_2 \colon \mathcal{P}(\mathbb{C}) \to \mathbb{R}$.

Corollary 2

For any smooth projective curve X over \mathbb{C} and $f_i \in \mathbb{C}(X)^{\times}$, the following formula holds:

$$\mathcal{CL}_2(X|f_1, f_2, f_3) = \widetilde{\mathcal{L}}_2(\mathcal{H}_{\mathbb{C}(X)}(f_1 \wedge f_2 \wedge f_3)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Bibliography

[Goncharov, 2005]

Goncharov, A. B. (2005).

Polylogarithms, regulators and Arakelov motivic complexes.

Journal of the American Mathematical Society, 18(1):1–60.

Rudenko, D. (2021).

The strong suslin reciprocity law.

Compositio Mathematica, 157(4):649–676.

Thank you for your attention!

<□> <</p>
<□> <</p>
□> <</p>
□> <</p>
□> <</p>
□>
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□