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1. Introduction

Let S = {1, 2, 4, 5, 8, 9, 10, 13, 16 . . .} = {s1, s2, s3, . . . , sn, . . .} be the
sequence of all positive integers which are sums of two squares,
arranged in ascending order.

It is well-known that sn ∼ Cn
√

log n for
C ≈ 1.3085. Next, it is natural to ask about bounds for sn+1 − sn.
The only known upper bound

sn+1 − sn � s1/4n

easily follows via greedy approximation:

x = (x− f(x)) + (f(x)− f(f(x))) + f(f(x)),

where f(x) = x− [
√
x]2 = O(

√
x).

Some probabilistic models suggest the bound

sn+1 − sn � (ln sn)3/2.
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1. Introduction

The following lower bounds for g(N) = maxn≤N (sn+1 − sn) are
proved by certain combinatorial considerations:

g(N)� logN√
log logN

(P. Erdős)

g(N) ≥
(
1
4 + o(1)

)
logN (I. Richards)

g(N) ≥
(
195
449 + o(1)

)
logN (R. Dietmann, C. Elsholtz)

g(N) ≥
(
390
449 + o(1)

)
logN (A.K., S. Konyagin)

One can also prove bounds for moments of gaps. The first result in
this direction is by C. Hooley:∑

sn+1≤x

(sn+1 − sn)γ � x(log x)0.5(γ−1)

for all γ < 5
3 . To prove this, Hooley constructs certain function f(n)

with f(n) = 0 for n 6∈ S and proves upper bounds for the quantity

∑
n≤x

 ∑
n<m≤n+h

f(m)−∆h

2

for certain values of h and ∆. Proof relies on bounds for Kloosteman
sums.
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2. Main identity

Now we are going to discuss a (relatively) recent improvement of
Hooley’s result, which allows us to extend the range of admissible γ to
γ < 2.

Theorem 1 (K.,2018)

For any 1 ≤ γ < 2 we have∑
sn+1≤x

(sn+1 − sn)γ � x(log x)1.5(γ−1).

To prove this, we need to consider the function

Θ(τ ; z) =
∑
n≥0

r2(n)J0(2π
√
nz)eπinτ .

Here z ∈ C, τ ∈ H, J0(2
√
z) =

∑ (−1)nzn
n!2 and

r2(n) = #{(a, b) ∈ Z2 : n = a2 + b2}.
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2. Main identity

It turns out that Θ(τ ; z) behaves like Jacobi form. In particular, it
satisfies the following identity

Θ

(
−1

τ
,
z

τ

)
= −iτ exp

(
4πiz2

τ

)
Θ(τ, z).

There are several ways to prove this formula. For example, one can
use general theorem by N.V. Kuznetsov:

Theorem 2

Let f(τ) be a modular form of type (λ, k, w), i.e. f(τ + λ) = f(τ) and
f
(
− 1
τ

)
= w(−iτ)kf(τ). Assume that f(τ) =

∑
n≥0 a(n)e2πiτn/λ.

Then the function

gf (τ, z) =
(2π)k−1a(0)

Γ(k)
+
∑
n>0

a(n)e2πiτn/λ
Jk−1(4πz

√
n)

(z
√
n)k−1

satisfies gf
(
− 1
τ ,

z
τ

)
= w(−iτ)k exp

(
2πiz2λ
τ

)
gf (τ, z).
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2. Main identity

One can also prove our identity using Laplace transform of Bessel
function or confluent hypergeometric functions and functional
equation for the corresponding L-function.

Other way to do it is to
consider the integral

I(z, τ) =
1

2π

∫ 2π

0

ϑ(τ, z cosϕ)ϑ(τ, z sinϕ)dϕ,

observe that I(z, τ) = Θ(z, τ) and use the fact that ϑ(τ, z) is a Jacobi
form.
To derive Theorem 1 from the main identity, let us choose large N
that is far from all sums of two squares and large parameter M .
Define

S(N,M) = Θ(iM−1,
√
N) =

∑
n≥0

r2(n)J0(2π
√
nN)e−πn/M .
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2. Main identity

Our transformation formula gives

S(N,M) = Me−πNM
∑
n≥0

r2(n)I0(2πM
√
nN)e−πnM .

Now, as z → +∞ we have I0(z) ∼ ez√
2πz

, so that

Me−πNMI0(2πM
√
nN)e−πnM ∼

√
Me−πM(

√
n−
√
N)2

2π 4
√
nN

.

From this one can easily derive that if |N − a2 − b2| ≥ H for all
integers a, b and M = 10N logN

H2 then S(N,M) = o(1).

On the other hand, the functions N 7→ J0(2π
√
nN) oscillate with

different phases for different nonzero n, which means that they are
essentially orthogonal to each other. For more rigorous argument one
should use Weber’s second exponential integral:

∫ +∞

0

J0(2
√
αx)J0(2

√
βx)e−γxdx =

1

γ
I0

(
2
√
αβ

γ

)
e−(α+β)/γ .
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different phases for different nonzero n, which means that they are
essentially orthogonal to each other. For more rigorous argument one
should use Weber’s second exponential integral:

∫ +∞

0

J0(2
√
αx)J0(2

√
βx)e−γxdx =

1

γ
I0

(
2
√
αβ

γ

)
e−(α+β)/γ .
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2. Main identity

Using this observation, one can show that∫ N

0

(S(x,M)− 1)2dx�
√
NM logN

and

µ(x ≤ N : min
s∈S
|x− s| ≤ H)� N(logN)3/2

H
.

One of the clear downsides of this method is the fact that S(x,M)− 1
can be far from zero for values of x that are not so far from the
nearest sum of two squares.
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3. Differential equations

There is yet another way to understand (at least, qualitatively), why
Θ(τ, z) is useful for detection of large gaps in S:

we have

πi
∂Θ(τ,

√
z)

∂τ
=

∂

∂z

(
z
∂Θ(τ,

√
z)

∂z

)
,

because J0(2π
√
nz)eπinτ is the standing wave of this equation.

On the other hand, from Voronoi summation formula we get

Θ(0,
√
z) =

∑
n≥0

J0(2π
√
nz) =

1

π

∑
n≥0

r2(n)δ(z − n).

Of course, we can also try to go a little deeper.
Transformation formula implies that

Θ(τ,
√
z) = exp

(
−π

2

6
zE2(τ)

)∑
n≥0

fn(τ)zn

for E2 = 1− 24
∑
n≥1 σ1(n)e2πinτ and some modular forms fn(τ) of

weight 2n+ 1
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3. Differential equations

It turns out that these modular forms can be described in terms of
certain sequence of polynomials satisfying a differential recurrence
relation.

For all n the form fn/θ
2 is automorphic for the group Γ(2).

More precisely, let us define ”male theta-series” by

θM (τ) =
∑
n∈Z

(−1)nqn
2

and ”female theta-series” by

θF (τ) =
∑

n∈Z+1/2

qn
2

Define also X = −θM (τ/2)4/6, Y = θF (τ/2)4/6 and u = Y
X .

Then fn(τ) = π2nXnθ2(τ)pn(u) = π2nXn
√

6Y − 6Xpn(u) for some
polynomials pn with rational coefficients.
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3. Differential equations

More precisely, we have p0(u) = 1 and for all n ≥ 0

(n+ 1)pn+1(u) + pn(u)(u(1− 4n) + 2n+ 1) + 6(u2 − u)p′n(u)+

+(u2 − u+ 1)pn−1(u) = 0.

Here are the first few values of pn:

p0 = 1, p1 = −u− 1,

p2 = u2 − 5

2
u+ 1, p3 = −4

3
u3 +

3

2
u2 +

3

2
u− 4

3
,

p4 =
25

12
u4 − 19

6
u3 +

21

8
u2 − 19

6
u+

25

12
,

p5 = −209

60
u5 +

91

12
u4 − 463

120
u3 − 463

120
u2 +

91

12
u− 209

60
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Thank you for your
attention!
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