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We consider some problems of aggregation of individual preferences. We
show that under rather general assumptions there are only two clones of aggre-
gation rules that allow invariant symmetric classes of preferences, each of these
clones being generated by a single function.

Let A be a �nite set and r a natural number. The symbol [A]r denotes the
set of all r-element subsets of A. Individual preferences are modeled by r-choice
functions on a set A, i.e. functions c : [A]r → A satisfying f(p) ∈ p for any
p ∈ [A]r. The set of all r-choice functions on a set A is denoted by Cr(A). A
set D ⊆ Cr(A) is called symmetric if c ∈ D ⇒ cσ ∈ D for any permutation
σ of A where cσ(p) = σ−1c(σp) for any p ∈ [A]r. A (simple local) aggregation

rule is a function f : An≤r → A where An≤r = {a ∈ An : |rana| ≤ r}, see [1] (cf
[2]). For all c1, c2, . . . , cn ∈ Cr(A) and f : An≤r → A the symbol f(c1, c2, . . . , cn)
denotes the r-choice function c de�ned by c(p) = f(c1(p), c2(p), . . . , cn(p)) for
all p ∈ [A]r. An aggregation rule f : An≤r → A preserves a set D ⊆ Cr(A) if
f(c1, c2, . . . , cn) ∈ D for all c1, c2, . . . , cn ∈ D. The Galois connection generated
in natural sense by the preservation relation is denoted (Invr,Polr). A set D ⊆
Cr(A) has the Arrow property if Polr(D) contains only projections (dictatorship
rules). All symmetric sets without the Arrow property were classi�ed in [3], see
also [1]. In addition, it is shown [4] that if r = 2 (this is the most important
case) and |A| ≥ 5 then for any set D ⊆ Cr(A) without the Arrow property the
set Polr(D) consists of functions generated by the �counting-out game� function
` de�ned by `(x, y, y) = `(y, x, y) = `(y, y, x) = x. This result can be considered
as a generalization of Arrow's impossibility theorem [5]. In essence, it means
that there are no acceptable aggregation rules for symmetric sets of preferences.

For positive results, we consider a more general situation. A set D ⊆ Cr(A)
is called trivial if D = {c ∈ Cr(A) : c �B= d �B} for some d ∈ Cr(A) and
B ⊆ [A]r (a trivial set D is preserved by any aggregation rule). A set D ⊆
P(Cr(A)) is called trivial if it contains only trivial sets. A set D ⊆ P(Cr(A))
is called symmetric if D ∈ D ⇒ Dσ ∈ D for any permutation σ of A where
Dσ = {cσ : c ∈ D} (for example, the class of all single-peaked domain [6] is
symmetric). Let ∂ : A3

≤2 → A be a majority function. We prove the following
dichotomy theorems.

Theorem 1. Let |A| ≥ 5. Let f : An≤2 → A be a non-dictatorship aggregation

rule and D ⊆ Inv2(f) a non-trivial symmetric set. Then D ⊆ Inv2(∂) or D ⊆
Inv2(`)
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Let f : An≤r → A and C ⊆ Cr(A). A set D is compatible with the pair (f,C)
if D ⊆ C and f(c1, c2, . . . , cn) ∈ C for all c1, c2, . . . , cn ∈ D A set of all sets what
is compatible with (f,C) is denoted by Comp (f,C). A function c ∈ Cr(A) is
called rational if c(p) = max� p for some linear order � on A. The set of all
rational function c ∈ Cr(A) is denoted by Rr(A).

Theorem 2. Let |A| ≥ 5. Let f : An≤2 → A be a non-dictatorship aggregation

rule and C ⊆ Comp(f,R2(A)) a non-trivial symmetric set. Then there is a

symmetric class D ⊆P(R2(A)) such that

1. D ⊆ Inv2(∂) ∩ Inv2(f) or D ⊆ Inv2(`) ∩ Inv2(f) and

2. For all C ∈ C there is D ∈ D such that C ⊆ D.
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