Rheology of liquid n-alkanes. Molecular dynamics calculation

Kondratyuk N $\mathbf{D}^{1,2, @}$, Norman G E ${ }^{1}$ and Stegailov V \mathbf{V}^{1}
${ }^{1}$ Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg 2, Moscow 125412, Russia
${ }^{2}$ Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russia
@ kondratyuk@phystech.edu

Modern industry is strongly interested in rheological properties of hydrocarbon liquids as main constituents of oils and fuels. The calculation of the transport coefficients for monoatomic systems has become a routine process [1], but in the case of complex liquids the application of classical methods faces difficulties [2,3].
The diffusion coefficient of n-triacontane $\left(\mathrm{C}_{30} \mathrm{H}_{62}\right)$ is calculated using Einstein-Smolukhovsky and Green-Kubo relations. We use three different force fields: TraPPE-UA (united-atom) [4], DREIDING (all-atom) [5] and OPLS (all-atom, includes the Coulomb interaction) [6], for making sure that obtained results are not artefacts of a particular model. The $\left\langle\Delta r^{2}\right\rangle(t)$ has a subdiffusive part $\left(\left\langle\Delta r^{2}\right\rangle \sim t^{\alpha}\right)$, caused by molecular crowding at low temperatures. Long-time asymptotes of $\langle v(0) v(t)\rangle$ are collated with the hydrodynamic tail $t^{-3 / 2}$ demonstrated for atomic liquids [7]. The importance of these asymptotes are discussed. Parameters that provide the compliance of Einstein-Smolukhovsky and Green-Kubo methods are analysed. Temperature effects on the diffusion process are also treated. We compare results obtained using both equations with experimental data. The application of modified Stokes-Einstein equation for shear viscosity of polymers is presented.
The work is supported by the RSF grant 14-19-01295.
[1] Viscardy S, Servantie J and Gaspard P 2007 J. Chem. Phys. 1261
[2] Kowsari M H et al. 2008 J. Chem. Phys. 129224508
[3] Zhang Y et al. 2015 J. Chem. Theory Comput. 113537
[4] Mayo S L, Olafson B D and Goddard III W A J. Phys. Chem. 8897
[5] Martin M G and Siepmann J I 1998 J. Phys. Chem. B 1022569
[6] Jorgensen W L et al. 1996 J. Am. Chem. Soc. 11811225
[7] Alder B J and Wainwright T E 1970 Phys. Rev. A 1(1) 18

