Topic Modeling in Online
Communication Research: New
Possibilities and Challenges

Sergei Koltcov, Olessia Koltsova

—_—

CAcavammx |

m

=13 JUNE_2016



SAINT PETERSBURG

@ INTERNET HIGHER SCHOOL OF ECONOMICS
@ Ll

Laboratory oltsora,

sociologist

for Internet Studies Director

Sergei Koltcov,

Sergei Nikolenko, Vladimir Pyrlik,

Physicist, IT E
director I

Economist, senior
researcher

Mathematician,
Senior researcher

Svetlana I\:/'IIad imir N Svetlana
Bodrunova, lHippoyv, exeyeva,
Media scholar, Software Computational
developer linguist, junior

senior
researcher

researcher

. Nora Kirkizh
Galina !
) . Yury Rykov,
Selivanova, MA student in y Ry
- sociology, PhD student in
™ PhD studentin research intern sociology,

political science,

. research intern
2 research intern




Topic modeling: what is it?

Approaches in topic modeling: General view;
Results of simulation: Word — Topics and document
— Topics distributions;

Problem of stochastic matrix decomposition;
Evaluation of topic model sparsity

Problem of topic model stability

Ways of stabilization of topic model.

Future work.
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Topic modeling (TM) potentially can describe what topics occur
In a large text collection, how big they are and how they are
distributed over individual texts.

BUT:

TM is unstable: different runs yield different results;

TM describes well only a minority of texts;

It works poorly on short texts;

Quality metrics for TM are underdeveloped because of lack of
ground truth;

As a result: hard to choose between solutions, e.g. with different
topic numbers and other parameters.
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DOCUMENT

The central theme of IEREWE!" s that «nations are defined by
a shared heritage, which usually includes a commERNERELE: ), a
common faith, and a (»si:r ».[2] It also includes
ideas of WM« shared between members of the group, and with their
ancestors, and usually a shared language; however it is different from
purely cultural definitions of «the nation» (which allow people to
become members of a nation byelIIEEEE Nl ) and a purely
linguistic definitions (which see «the nation» as all speakers of a
specific language). Herodotus is the first who stated the main
(EEE TSN ME G, with his famous account of what defines

YRRy, where he lists (SN IEREITEELR: | and customs.
The central political tenet of SUQIERENLHEI ) is tham

can be identified unambiguously, and that each such group is entitled
to determinaticis

The outcome of this right to - =i E "1 may vary, from calls for
self-requlated administrative bodies within an already-established
society, to an =l0ife]alelagle]NEN=TaNes 2ifz1ie from that clety, tC

=ik removed from that =@ie=i7 I international relations, it
also leads to policies and movements for irredentism to claim a

D is a collection of documents

W is the set of all words in all documents.
T is a finite set of topics in dataset

Topic modeling is a procedure, where
hidden distributions, presented by matrixes
@, and 0,4 are restored during simulation.

Topic distribution in @,,,;

common language
self-determination

culture

society

Nanll

pwld) = X1 pWIDp(tld) = Xio1 Puibia
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1. Probabilistic latent semantic analysis (pLSA). Based on the idea that reconstructing ®,,, and 0,
can be done from finding maximum of total log-likelihood:

L(®,0) = z z nwdlnz D,,:0:q & max
deD,wed

teT
Procedure of maximization based on expectation-maximization (EM) algorithm under constraints:

2. Latent Dirichlet allocation (LDA): is a Bayesian version of pLSA: it assumes that multinomial
distributions 6,4 and @, are generated from prior Dirichlet distributions, one with parameter o (for
the 6,4 distributions) and one with parameter B (for the @, distributions).

Variation approximations of LDA — pure mathematician model

N Ned + 0 8
p(6,2,wloB) = p@l) | [ pCznlO)p (Wl B) a = o
n=t )
Where n, — number documents in topic t. Dpg = M
T+ ag
Where n,, — number words in topic t.
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3. Latent Dirichlet Allocation(Gibbs sampling) — based on idea from physics (Potts model)
C' +p Cyi+a

J

D.CL VB Cltal

P(zz.=jlw=m,z_,w )=

CWT - Matrix; cells: number of times a word was assigned to topic t,
m, ]
dDT' - Matrix; cells: number of times a word in document d is assigned to topic t.
')
' ij =N, - Vector; cells: number of words assigned to topic t,
m
C;=n, - Length of document d in words

Results of simulation:

1. Matrix of words distribution in topics. 2. Matrix of document distribution in topics.
DT WT
Oy = C;fj e $ = Cnji+ P
, m,j WT
(:dJ +Tax :E:(:m:j_k\//g
m

INTERNET
B @
@ STUDIES LAB



NATIONAL RESEARCH
UNIVERSITY

% Words with high probability
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% Documents with high probability
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F[documents x words] = ®[documents x topics]- d[topics x words]

Matrix F represents a dataset. Our dataset can be expressed in terms of two low

dimension matrices. Process of sampling is the process of approximation of
matrix F by two matrices @ and ©. But:

F=0-0=(0®-R)-(R"®)=0 -O

Matrix F can be approximated by different combinations of matrices (but with the
same dimensions

topics (r)

—N I:
@ g i docs (m) docs (m)

-

sports
politics
tech
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sports
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soccer

soccer

Obama politics Obama

topics (r)
A\

iPod E iPod
< <

Obamacare tech

||
words (n)

Obamacare
~
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LDA inference algorithm guarantees that the iterative process converges to a certain
value of perplexity with some noise, which means that the number of words and
documents used in modeling also converge to a certain value. Actually perplexity is
the inverse of the geometric mean per-word likelihood.

peplexity = exp{Z,x_s PW)ax) / Li=1 Na}

3.7

Words ratio

3.6

Word ratio as the parameter that
characterizes the ratio of the total
number of words with probability
greater than 1/V over all
documents, where V is

dictionary length. 321

3.5 4

3.4 1

Words
Ratio %

3.3 1

3.1

0 100 200 300 400 500 600
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The Kullback - Leibler divergence is a widely accepted distance measure between two
probability distributions. It can be calculated according to the following formula.

" "
oF oF

K = 0.52 ®llog (F) 105 Z ®2log (@)
K K K k

IF K=0, then two topics are identical. IF K=Max value then the value shows dissimilarity
of topics.

However, directly computing KL divergence to measure similarity between two topics in a
topic modeling result does not lead to a good result since the KL value is dominated by the
long tail of low probability words that do not define the topic in any qualitative way and are
mostly random.

KL-based similarity metric

Hn:(l—

) « 100 IF Kn=100%, then two topics are identical. IF

ax K=0 then that topics are totally different.
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Level 90 - 93% (and more) means that

first 50 words are almost identical.

Similarity 0.935

Level about 85%: topics are
completely different.

Similarity 0.854

USA 0.04734 USA  0.03567 USA 0.04734 water 0.01758
American  0.02406 American  0.01804 American  0.02406 help 0.01296
Syria  0.02082 Syria  0.01758 Syria  0.02082 city 0.01262
Obama 0.01374 country  0.01495 Obama  0.01374 far  0.01199
weapon 0.01343 war 0.01361 weapon 0.01343 house 0.01064
war  0.01309 military ~ 0.01246 ~war  0.01309 east  0.0104
president 0.01169 weapon 0.01084 president  0.01 16{_) region  0.00945
UN  0.01018 Russia  0.01004 O, DRSS gy 0.0
military ~ 0.01014 Ohénia 0opoge | ‘military 00104 |  fleed 0.0020A
country  0.01005 president  0.0096 coun.t ry 0.01005 T.(?S.ldcnt- 0‘00230
chemical  0.00944 UN  0.00869 chcnn.cal 0.00944 injured 0.00714
Syrian  0.00851 | international 0.00769 Syrian:  0.00551 FRS 10.00098
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In optimization theory, problems with unstable solutions are called ill-posed, and a
general approach to solving these problems is given by Tikhonov regularization [38]. In
terms of the model definition, regularization can be viewed as extending the prior
information which lets one reduce the set of solutions. Regularization is done either by
introducing constraints on 0, and ¢,,, matrices or by changing procedure o sampling.

Example of regularization: Semi-Supervised Latent Dirichlet Allocation

(Gibbs sampling) If we have initial distribution of words (anchor words) over

topics, then we are able to fix or glue words to topics.
Therefore, when the algorithm faces an anchor word
during sampling, it does not change the connection
between the topic and the word. But the other words are
sampled according to the standard procedure.

The SLDA modeling behaves as a process of
crystallization, where anchor words are centers of crystals.
The words that often co-occur with anchor words stick
together during simulation and form the body of topics.
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Topic model Topic quality metrics Topic stability metrics
coherence tf-idf coherence | stable topics Jaccard
pLSA -237.38 -126.08 54 0.47
pLSA + @ sparsity reg., a = 0.5 -230.90 -126.38 9 0.44
PLSA + © sparsity reg., 8 = 0.2 -240.80 -124.09 87 0.47
LDA, Gibbs sampling -207.27 -116.14 77 0.56
LDA, variational Bayes -254.40 -106.53 111 0.53
SLDA -208.45 -120.08 84 0.62
GLDA, [l =1 -183.96 -125.94 195 0.64
GLDA, [ =2 -169.36 -122.21 195 0.71
GLDA,[ =3 -163.05 -121.37 197 0.73
GLDA, [ =14 -161.78 -119.64 200 0.73

RESULT: (1) regularization can significantly improve stability, for example GLDA,
but (2) regularization can almost Kkill stability, for example pLSA with ®
regularization.

(LDA model can be regarded as regularized version of pLSA, where regularization is adding
information that distributions are Dirichlet functions). @ INTERNET
\
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TM Is convenient for big data.

But it has shortcomings -> can be overcome with regularization.
Some regularizations may decrease model quality.

Improvement is important for web science and digital humanities that
seek not only interpretable topics, but entire solutions to make
reliable conclusions about the topical structure of text collections.

Therefore, the problem of topic number is one of the central.

Needed: analysis of topic models’ behavior as a function of topic
number.

Probably based on physical approaches from condensed physics.
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