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             FINITE-DIMENSIONAL LIMITING DYNAMICS 

               OF SEMILINEAR PARABOLIC EQUATIONS 
 

                                   A.V. Romanov  (MIEM, Moscow) 

 
     My talk will be devoted the finite-dimensional description of limiting dynamics of semilinear 

parabolic equations.  The idea of finite-dimensional nature of the dynamics in such equations for 

large time goes back to the work [Hopf1948] and historically relates with the problem of 

turbulence.   

 

[Hopf1948]  E. Hopf.  A mathematical example displaying features of turbulence.   

                                                                           Comm. Appl. Math., 1:4, 303–322. 

  

                                                        1. PRELIMINARY 

 

    Let us consider the abstract dissipative semilinear parabolic equation (SPE)   

 

                                                           ( )tu Au F u                                                            (1-1) 

 

in a real separable Hilbert space  X   with scalar product  ( , )    and norm   .  Suppose  A   to 

be positive self-adjoint linear operator in  X   with compact inverse and  0{ }X
   be the 

Hilbert scale determined by  A .  We assume also the estimate 

 

                                       ( ) ( )F u F v K u v


         ( , )u v X                                (1-2) 

 

for the nonlinear term  F   with some  [0,1)    where  u A u

 .  I shall call the number  

   as exponent of nonlinearity of equation (1-1). The resolving phase semiflow  t   in  X
  is 

injective in the case  1/ 2    [Temam1997] and inherits the smoothness of function  

:F X X    [Henry1981] in a general case. In this situation there exists the compact global 

attractor  А X   [Temam1997], i.e. the maximal bounded invariant set in  X
  (actually  А  

attracts the bounded subsets in  X
  uniformly as  t  ). 

 

      The finite-dimensional description of SPE (1-1) limiting dynamics means the existing of  

ODE 

                                                        ( )tx h x    (
nx R )   
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with (at least) continue vector field  ( )h x  and unique solutions being describe (as maximum) the 

behavior of all solutions  ( )u t   for a large time or (as minimum) behavior solutions  ( )u t  А   

for  ( , )t   .  

 

[Temam1997]  R. Temam.  Infinite-dimensional Dynamical Systems in Mechanics and Physics.  

                                                                              Appl. Math. Sci. 68,  Berlin: Springer, 2-nd ed.  

[Henry1981]  D. Henry.  Geometric Theory of Semilinear Parabolic Equations. 

                                                                              Lect. Notes in Math. 840, Berlin: Springer. 

  

                                         2. INERTIAL MANIFOLDS 

 
     The most radical approach to the problem of a description of the final phase dynamics SPE 

(1-1) by a suitable ODE in  
nR   is connected with the conception inertial manifold (IM):  a 

Lipschitz or  
1C -smooth  finite-dimensional invariant surface  M  in  X

  containing the 

attractor and exponentially attracting all solutions  ( )u t   at a long time with asymptotic phase. 

Usually IM is building as a graph from low modes of linear part SPE to high ones. The 

restriction of equation (1-1) to  M   gives an ODE in  
nR   ( dimn  M)  which completely 

reproduces the final  X
- phase dynamics of SPE as  t  .  The most of known methods of  

IM’s  constructing demand the spectral gap condition 

 

                                                1 1( )n n n ncK         ,                                             (2-1) 

  

where  K   is the number in inequality (1-2) and  1 2{ ...} ( )A     .  In the case   

M Lip  the optimal constant  c   in this condition is 1  [Mik1991], [Rom1991-1993]; the 

simple and concise proofs with  2c    has been obtained in [Rob1993-1995]. The best known 

value  c   in (2-1) for the case  M 
1C   is equal  2   (see [Kok1997]).              

       Unfortunately, the spectral gap condition is highly restrictive and so the existing of IM may 

be proven for a narrow class SPEs only. This class contains for example scalar or vector 1d 

reaction-diffusion equations and scalar equations of the such type in some special domains  

( 2,3)nD R n    In the second case condition (2-1) usually is not executed and it needs to 

use so-called “Principle of spatial averaging” by [MP-Sell1988] (see [Kwean2001] too).   

   

      It needs to note the recent results due J. Vukadinovic (see [Vuk2009], [Vuk2011] and cites 

there). In particularly, the existing of IM to diffusive Burgers equations  

 

                                     ( ) ( )tu u u u Tu g x              ( )u                        (2-2) 

   

on the tori [ , ]d  ,  1,2d    has been proved in the last paper. The functions  ( , )u t x   have 

vanishing spatial average and the operator  T   is assumed to be Fourier multiplier with arbitrary   

bounded symbol  : dm Z R ,  (0) 0m    in (2-2).  This author employs suitable  

transformations of original SPEs (the Cole-Hopf transformation for the Burgers equations) in 

order to satisfy the spectral gap condition. It is important that his transformations preserve the 

symmetry property of the linear term of underlying equation. It needs remind in this connection 
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the numerous incorrect works published in 90-s years (M. Kwak and some other authors) in 

which this property were violated after a transformation of original equation.     

 

[Mik1991]   M. Miklavcic.  A sharp condition for existence of an inertial manifold.   

                                                                           J. Dyn. Differ. Eq., 3:3, 437-456.       

[Rom1991]  A.V. Romanov.  Conditions for the asymptotic  k - dimensionality of semilinear  

                                                parabolic equations. Russ. Math. Surveys, 46:1, 255-256.   

[Rom1993]  A.V. Romanov.  Sharp estimates of the dimension of inertial manifolds for  

                   nonlinear parabolic equations (in English, 1994). Izvestia: Mathematics, 43:1, 31–47. 

[Rob1993]  J. C. Robinson.  Inertial manifolds and the cone condition.   

                                                                                               Dyn. Systems Appl., 2:3, 311–330. 

[Rob1995]  J. C. Robinson.  A concise proof of the geometric construction of inertial manifolds.   

                                                                                              Phys. Lett. A, 200, 415–417. 

[Kok1997]  N. Koksch.  Almost sharp conditions for the existence of smooth inertial manifolds.  

                           Conf. Diff. Equat. Appl. (Equadiff-9), 1997, Brno, 139-166. 

[MP-Sell1988]  J. Mallet-Paret and R. Sell.  Inertial manifolds for reaction diffusion equations  

                                                      in higher space dimensions.  J. Amer. Math. Soc. 1:4, 805–866. 

[Kwean2001]  H. Kwean.  An inertial manifold and the principle of spatial averaging.  

                                                                                             Int. J. Math. Math. Sci. 28:5, 293–299. 

[Vuk2009]  J. Vukadinovic.  Inertial manifolds for a Smoluchowski equation on a unit sphere.   

                                                                              Comm. Math. Phys., 285:3, 975-990.  

[Vuk2011]  J. Vukadinovic.  Global dissipativity and inertial manifolds for diffusive Burgers  

                    equations with low-wavenumber instability.  Discr. Cont. Dyn. Syst., 29:1, 327-341.   

                               

                     3. NON-EXISTING OF INERTIAL MANIFOLD 
 

       At present it is known very little about non-existing of IM for SPE (1-1). In [Rom2000] has 

been constructed the system of two coupled 1d parabolic pseudo-differential equations which 

have no the smooth IM. This is rather artificial example, but the more natural one has been only 

mentioned  in the short note [Rom2002].  Let us consider the integro-differential parabolic 

equation 

                                       (( ) ) ( , , )t x x xu I B u f x u u Ku                                          (3-1) 

 

on the unit circle   .  The bounded linear operators  K ,  I id ,  B B  act in  
2( )X L    

and the function  ( , , )f x u p   is smooth but non-analytic.  The operator  0I B    plays a 

part of non-local diffusion coefficient and value  Ku   plays a part of non-local linear source.  

More exactly, 

 

                                         

2

0

1
( )( ) ln sin ( )

2 2

x y
Bh x h y dy






     

for  h X .  Remark that  xB   is slightly modified Hilbert’s operator with the kernel  

ctg
2

x y
  instead  ctg

2

x y
.   

 

     THEOREM  3.1.  At the suitable choice of the function  f   and the compact 

integral operator  K   with  C - kernel the equation (3-1) generates the smooth 
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dissipative semiflow in  , 3/ 4X     and there no exists the invariant finite-

dimensional  1C  - manifold  M X   containing the attractor of this equation. 
             

     The both above-mentioned examples are based on properties of spectra  

  

                                                         ( ( ))u A DF u     

in stationary points of SPE (1-1).  Let  E   is the set of hyperbolic stationary points  u X   for 

which  u   does not contain any real values  0  .  Moreover let  ( )l u   be the number (with 

multiplicity) of the values  0    in  u .  It is clear that  ( )l u  . 

            

     LEMMA  3.2  [Rom2000].   If  attractor  А   of  SPE (1-1)  is contained in some 

smooth invariant finite-dimensional manifold  M X   then for any points  

1 2,u u E   the number  1 2( ) ( )l u l u   is even.  

 

[Rom2000]  A.V. Romanov.  Three counterexamples in the theory of inertial manifolds.  

                                                                                                  Math. Notes, 68:3, 378–385. 

[Rom2002]  A.V. Romanov.  On the finite-dimensional dynamics of parabolic equations.  

                              Nonlinear dynamical analysis (NDA’2). Moscow, June 3-8, 195 (in Russian).  

  

 

                4. THE LIPSCHITZ FINITE-DIMENSIONAL DYNAMICS   

                                                ON ATTRACTOR 
  

      Since there are above-mentioned problems with the IM existing it has been suggested in the 

works  [EFNT1994]  and  [Rob1999]  to consider ODEs reproducing the phase dynamics of 

evolutionary equation (1-1)  on the attractor only. Let us say in this connection (following 

[Rom2000])  that phase dynamics on the attractor is Lipschitz finite-dimensional  (it takes place 

the property LFDA)  if for some ODE  

  

                                                               ( )tx h x                     ( , Lip)nx R h                                                       

 

with phase flow  tS   and  tS  - invariant compact  
nV R   the dynamical systems  t   on  А  

and  tS   on  V   are Lipschitz adjoined for  0t  .  The property LFDA is formally weaker than 

the property of existing of inertial manifold because in this case we consider the dynamics on 

attractor only. 

      I shall not discuss now very important question whether here  V   be the global attractor of  

the flow  tS   and I hope to learn many interesting in this connection on our meeting.  

   

      Further let  ( ) ( )G u F u Au    and  nP   be orthogonal spectral projection in  X
  

(Fourier projection)  corresponding the first  n   (with multiplicity) low modes of the operator  

A .  Let more over  А 0   be the set of points  w u v    for different  ,u v А .  

 

      In the papers [Rom2000-2006] were proven the following criteria of the property LFDA.   

 

     (Vf)  The vector field of equation (1-1) is Lipschitz on attractor, i.e.   



 5 

 

                                                  1( ) ( )G u G v C u v
 

    

 

for  ,u v А .    

      (Fl)  The semiflow  t   on attractor is injective and extends to Lipschitz flow. It means that   

 

                                                2
k t

t tu v C e u v


       

 

on  А   for any  t R  and  k k ( А).   

      (Fl0)  It takes place the estimate    

                                                   ( )u v c u v  
      

 

on  А   for some fixed  0  .   

     (Em)  The metrics  X
  and  X 

  are equivalent on  А  for some (for any)  [0,1]  ,  

  . 

    (Le)  There exists a linear bi-Lipschitz embedding of attractor  А   into  
nR .  This means  А   

to be a Lipschitz graph.    

    (Lle)  For any point  u А  some its  X
- neighbourhood on  А  may be linear bi-Lipschitz 

embedded into  
nR . The rank of corresponding embedding can depend from  u .  This property 

means that  А   is of local Lipschitz-Descartes structure.  

 

    (GrF)  It takes place the estimate  

 

                                                       3 ( )nu v C P u v
 

     

 

on  А  for some  1n  .  It means the possibility of linear bi-Lipschitz embedding of attractor  А   

into  
nR   by some Fourier projection.   

     

      There are  i iC C ( А)  in the formulas above. Some (but not all) of these criteria suggest the 

additional smooth condition  
2( , )F C X X .  

  

      The criterion (Em) have been obtained independently by  J.C. Robinson  and  E. Pinto de 

Moura  [Rob2003],  [PM-Rob2010])  for  1    .  It is known [CFKM1997] that Fourier bi-

Lipschitz embedding property (GrF) follows from the property (Em) with  0, 1/ 2    

what in essentiality is the boundness of Dirichlet quotient  
( , )

( , )

w Aw

w w
    on   А 0 .   

      If  А
s
 is the set of points  

w

w
    ( w А 0 ),  we can formulate some more following 

three criteria of  LFDA. 

  

     (Sk)  The set  А
s
  is relatively compact  in  X

  ([Rom2001]).   
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     (Sk0)  The Hausdorff measure of non-compactness of the set  А
s
  is less then 1,  i.e.  А

s
  lies 

on the ε-neighbourhood of some compact set  H X   with  1    ([Rom2006]).   

     (Skw)  The weak closure of the set  А
s
  in  X

  does not contain zero  ([ML-W2005]).  

 

     H. Movahedi-Lankarani has called the properties (Sk) and (Skw) of the set  А  by  

“spherically compactness ”  and “weak spherically compactness ” respectively.  More exactly, it 

has been proved in the paper [ML-W2005])  that  (Sk)   (Le)  and  (Skw)   (Le)  for any 

compact set  А  in any Banach space.  

  

     Let finally formulate the useful sufficient condition [Rom2000-2001]: if attractor  А  is 

contained in a finite-dimensional  
1C -submanifold  M X   then LFDA holds.  We do not 

suggest here  M  to be invariant.  Remark that it follows from properties (Le), (GrF) that 

attractor is the part of a finite-dimensional Lipschitz submanifold  M X .  

  

[EFNT1994]  A. Eden, C. Foias, B. Nicolaenko, R. Temam.  Exponential Attractors for  

                                                                    Dissipative Evolution Equations.  Wiley: New York. 

[Rob1999]  J.C. Robinson.  Global attractors: topology and finite-dimensional dynamics.  

                                                                           J. Dyn. Differ. Eq., 11:3, 557–581.  

[Rom 2000]  A.V. Romanov.  Finite-dimensional limiting dynamics for dissipative parabolic  

                                                 equations.  Sbornik: Mathematics, 191:3, 415-429. 

[Rom2001]  A.V. Romanov.  Finite-dimensional dynamics on attractors of non-linear parabolic  

                                                equations.  Izvestia: Mathematics, 65:5, 977-1001. 

[Rom2006] A.V. Romanov.  Effective finite parametrization in phase spaces of parabolic  

                                               equations.  Izvestia: Mathematics, 70:5, 1015-1029.  

[Rob2003]  J. C. Robinson.  Attractors and finite-dimensional behavior in the Navier- Stokes  

                                              equations.  Instructional Conf. Math. Anal. of Hydrodynamics.   

[PM-Rob2010]  E. Pinto de Moura, J.C. Robinson.  Log-Lipschitz continuity of the vector field 

                on the attractor of certain parabolic equations, arXiv:1008.4949v1 [math.AP], 29 Aug. 

[CFKM1997]  P. Constantin, C. Foias, I. Kukavica, A. Majda. Dirichlet quotients for periodic 2   

                                    dimensional Navier–Stokes equations.  J. Math Pure Appl., 76:2, 125–153.  

[ML-W2005] H. Movahedi-Lankarani, R. Wells.  On bi-Lipschitz embeddings.   

                                                                                 Portugaliae Mathematica, 62:3, 247–268.  

 

                      5. THE EXAMPLES OF SPEs WITH PROPERTY LFDA 
 

        The property LFDA looks as successful replacement of the  IM’s  conception but at present 

there are no much examples equations (1-1) for which the existing of inertial manifold is not 

known but which are demonstrating LFDA. There are for example [Rom2001]  PDEs 

 

                                       ( , , ), (0,1)t xx xu d u f x u u x   ,   0d                             (5-1)                                

 

in the suitable phase space with the smooth function  f   and standard (Sturm or periodic) 

boundary conditions. The considerations are based on nonlinear version cone condition with 

using the criterion of (Lle) and the Liouville transformation of the linearized equation. 

      Independently I. Kukavica has obtained [Kuk2003] the Fourier embedding property (GrF) to 

the equation (5-1) in the periodic case. Moreover he has obtained this property for dissipative 

equations of the form 

 



 7 

                                 
(2 ) (2 2)( 1) ( , , ,... ) ( 1)m m m

t xu u f x u u u m     

 

on the circle. The arguments in [Kuk2003] connected with boundness of Dirichlet quotient and a 

version of Liouville transformation are simpler that one’s in [Rom2001] but give more particular 

result for equation (5-1). Also it was noted in [Rom2001] that property LFDA takes place for 

systems 1d equations on form  

 

                                       ( ( ) ) ( , , )j j
t x x j xu d x u f x u u  ,    1 j n                

 

with Dirichlet boundary condition and any smooth function  ( ) 0d x  .  Some modification of 

the Liouville transformation [Kam1992] must be used in this case.   

 

[Rom2001]  A.V. Romanov.  Finite-dimensional dynamics on attractors of non-linear parabolic  

                                                equations.  Izvestia: Mathematics, 65:5, 977-1001. 

[Kuk2003]  I. Kukavica.  Fourier parametrization of attractors for dissipative equations in one  

                                               space dimension.  J. Dyn. Differ. Eq., 15:2/3, 473-484. 

[Kam1992]  D.A. Kamaev. Families of stable manifolds of invariant sets of systems of parabolic  

                                               equations.  Russ. Math. Surveys, 47:5, 185–186.  

 

              6. THE LOG-LIPSCHITZ FINITE-DIMENSIONAL DYNAMICS   

                                               ON ATTRACTOR 
 

       The following weakening of the property LFDA due E. Pinto de Moura and J. Robinson 

[PM-Rob2010] seems very perspective. Suppose that the vector field  ( )G u   is   -log-Lipschitz 

on attractor in  X
-norm, i.e. 

 

                                     1( ) ( ) ln
M

G u G v C u v
u v


 

  


     ( ,u vА),   

 

and exists the linear embedding  : nL X R    with   -log-Lipschitz  inverse on the image  

L (А).  Recently the possibility of such embedding has been proved ([Ol-Rob2010], [Rob2010]) 

with any  1/ 2    in assumption that the set  А   А  is homogeneously, i.e. has the finite  

Bouligand-Assouad  dimension. If here the inequality  1     holds then the phase dynamics 

of SPE (1-1) on attractor is described by suitable ODE in  
nR   with unique solutions. One can 

speak in this case about log-Lipshcitz finite-dimensional dynamics on attractor (the property log-

LFDA) of the equation (1-1). 

   

     There are a few facts which testify that the LFDA or log-LFDA may be more general 

properties of SPEs then the existing of inertial manifold.  I shall enumerate its. 

  

     1). In fact yet in the paper  [Lad1972]  (see [Rom2000] too)  for a class SPEs containing  2d 

N-S on torus was obtained the estimate  

 

                                  ( )u v c u v


  
      (

ke   ,  0  ) 

 

on  А  with some k k ( А)  (the «almost» property (Fl0)). 
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      2) Accordingly to the resent result  [Kuk2007]  (see [PM-Rob2010] too)  if  1/2    then   

 

                                            1/ 2 1/ 2
1 log

M
A w C w

w
         ( wА 0 ).                (6-1) 

 

If attractor А   is bounded in  
1X ,  1/ 2    and  

1/ 2 1Lip( , )F X X   then ([PM-Rob2010]) 

the estimate           

                                              2 log
M

Aw C w
w

                 ( wА 0 )                   (6-2) 

 

follows from (6-1). The inequality 

 

                                       3( ) ( ) log
M

G u G v C u v
u v

  


          ( ,u vА)       

 

follows from (6-2) easily (the constants  , iM C   depending from  А  only).  Three last estimates 

are the «almost» properties (Em) and (Vf).   
  
     3) Accordingly to results of works [PM-Rob2010], [Ol-Rob2010],  if the inequality (6-2) is 

valid then for any positive  1   exists a linear embedding  : nL X R   with  ( )n n    

such that   

 

                                            nR
u v C Lu Lv




                         ( ,u vА). 

 

This is the «almost» property (Le).   

 

[PM-Rob2010]  E. Pinto de Moura, J.C. Robinson.  Log-Lipschitz continuity of the vector field  

                on the attractor of certain parabolic equations,  arXiv:1008.4949v1 [math.AP] 29 Aug. 

[Ol-Rob2010]  E.J. Olson, J.C. Robinson.  Almost bi-Lipschitz embeddings and almost  

                                                        homogeneous sets.  Trans. Amer. Math. Soc., 362:1, 45-168.                                                             

[Rob2010]  J.C. Robinson.  Log-Lipschitz embeddings of homogeneous sets with sharp  

                 logarithmic exponents and slicing the unit cube,  arXiv:1007.4570v [math.MG] 26 Jul.  

[Lad1972]  O. Ladyzhenskaya.  On the dynamical system generated by the Navier–Stokes  

                                                          equations (in English, 1975).  J. Soviet Math., 3:4, 458-479.  

[Rom 2000]  A.V. Romanov.  Finite-dimensional limiting dynamics for dissipative parabolic  

                                                 equations.  Sbornik: Mathematics, 191:3, 415-429. 

[Kuk2007]  I. Kukavica.  Log-log convexity and backward uniqueness.   

                                                          Proc. Amer. Math. Soc., 35:8, 2415-2421. 

 

 

                 7. THE IMPROVEMENT OF THE KUKAVICA ESTIMATE 
 

     I formulate the following statement improving the Kukavica estimate (6-1) if   1/ 2    and 

actually repeating it for  1/ 2  .  Such improvement is interesting in connection the property  

log-LFDA.   
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      THEOREM  7.1.  If  [0,1/ 2]    and  
1

2(1 )






  then   

 

                                         
2

1/ 2 / 2

2
(ln )

M
A w d w

w


                                  (7-1) 

 

for  wА 0    with   

1

2 2(1 )1
(2 )d K 




 





  and  M m e ,  diamm  А  in  X .   

 

     In particular: 

 

                    
1

2
    for  0  ,   

2

3
    for  

1

4
  ,   1    for  

1

2
     

 

and the estimate   

                                                   

2
1/ 2 1/ 4

2
2 ln

M
A w K w

w
                   (wА 0 )    

 

holds in the case  0  .   Acting now as in [PM-Rob2010] one can get the following statement.  

 

     COROLLARY  7.2.  If  0    and  1/ 2 1/ 2Lip( , )F X X   then    

 

                                            
1/ 2log

M
Aw C w

w
              ( wА 0 )                 

with  (C C А ) .  

 

     Let as denote  ( ) ( )R F u F v    for  ,u v X . 

 

    LEMMA  7.3.  It takes place the estimate 

 

                                       
( )

( ) ( )
k t

w t w e





               (t  ,   
2

1 2
14

K
k

 
 ) 

 

for the difference  ( ) ( ) ( )w t u t v t    of any solutions of equation (1-1).   

 

     Proof.  Multiplying (1-1) scalarly on  w   and taking into account relation (1-2) we can write  

 

           
22 1 2 1 2

1

1
( , ) ( , )

2

d
w A A w A w R w A w K A w w

dt

               
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where 

                              

22 21 2
1 1 2

14

K
K A w w A w w  









  . 

Also we obtain the inequality 

 

                                                

2
2 2

1 2
1

1

2 4

d K
w w

dt  
  

and lemma 7.3 follows. 

 

     Proof the theorem 7.1.  Let  
( , )

( , )

w Aw

w w
    be classical Dirichlet quotient for  wА 0   and  

2

2
ln

M
L

w
 .  Note that  1L  .  If to consider for any  [0,1]   the log-Dirichlet quotient  

( )
( )

( )

t
Q t

L t


   (really  0 0( ) ( ; ),Q t Q t w w А 0 ,  0(0)w w )   then  [Kuk2007, p.2417]  

the inequality   

                                                     

22

1 2

2
t

RQ
Q

L w L
 




                                                 (7-2) 

 

holds. Accordingly (1-2)  we have the estimate  R K A w .  There follows from 

interpolation inequality   

                                                    
21 2 1/ 2A w w A w
 

  

that   

                                       
2 42 2 42 2 1/ 2R K A w K w A w

 
   

and   

                                            

4
1/ 22

2 2 2

2 4

A wR
K K

w w






  . 

 

Taking into account the last relation one can obtain from (7-2) the estimate  

 

                                        
2 2

2

1 2

2
t

Q K
Q Q

L L


  


 

  .   

Postulating equality  1 2       we have  
1

(1 )
2

     for values  [0, 1/ 2]    

and  [1/ 2, 1]   (remark that    ).  Thus,   

                                             
2 2 2( ) 2 ( )tQ b t Q K b t Q      
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for every  [0, 1/ 2]    with  
1

2(1 )






  and  

1

1
( )

( )
b t

L t
 .  Using the Young 

inequality   

                                                   

2 2
2 2 (2 )

2
qQ K

K Q
p q

      

with  
1

p


   and  
1

1
q





  we get the estimates   

                                        

1

2 2 1( ) ( ) (1 ) ( )(2 )tQ b t Q b t K                                 (7-3) 

 

for the family functions  0( ) ( ; )Q t Q t w .  Suppose for the clarity  d d    and apply to the 

analysis of inequality (7-3) the typical arguments  (see [Temam1997] for example).  As  

( )Q t d   is the solution of the differential equation corresponding to (7-3) then  ( )Q t d   on  

[0, )   when  (0)Q d .  If  (0)Q d   then  ( )Q t d   on  ( , 0)   and we have  

                                                           
2( ) ( )

dz
b t z

dt
       

 

for the positive value  ( ) ( )z t Q t d  .  Integrating this inequality and denoting  

0

( ) ( ) ( )

s

a s b t dt      we found: 

           

(0)

2
( )

( )

z

z s

dt
a s

t
  ,   

1 1
( )

(0) ( )
a s

z z s
  ,   

( ) 1
(0)

1 ( ) ( ) ( )

z s
z

z s a s a s
 


.   

 

Returning to the variable  Q   we obtain the estimate   

 

                                                         
1

(0)
( )

Q d
a s

  .                                                      (7-4) 

 

for  0s  .  Further accordingly lemma 7.3 we have  

 

                               (0) ( ) ksw w s e ,   
1 1

( ) (0) ksw s w e
       

 

for  0s  .  Consequently,   

 

                                
22 2( ) ln( (0) ) (0) 2ksL s M w e L ks
     

 

and   

                                               
1

1
( )

( (0) 2 )
b s

L ks 



.   
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As  [1/ 2,1]   then independently from the choice of initial points  0w  А 0   the integrals  

0

( )b s ds



   diverge hence  ( )a s    as  s   and  (0)Q d   from (7-4).  After 

extracting a square root we obtain the founded estimate (7-1) and the theorem 7.1 is proved.   

 

[Kuk2007]  I. Kukavica.  Log-log convexity and backward uniqueness.   

                                                                              Proc. Amer. Math. Soc., 35:8, 2415-2421.  

[Temam1997]  R. Temam.  Infinite-dimensional Dynamical Systems in Mechanics and Physics.  

                                                                              Appl. Math. Sci.  68,  Berlin: Springer, 2-nd ed.  

 

                8. THE FINITE-DIMENSIONAL HYPERBOLIC DYNAMICS   

 
     I want to remind here one old and undeservedly forgotten result of  D. Kamaev [Kam1980]  

which seems interesting in the context my talk’s theme. It needs note in this connection that all 

results about the finite-dimensional dynamics on attractor being formulate above are valid for 

any compact invariant set (CI-set)  K  A.   

      Let  nP   be the spectral projector of linear part  A   of SPE (1-1) corresponding its  n   (with 

multiplicity) low modes.  Assuming that  np P u   for  u X   consider Galerkin’s 

approximations 

 

                                                  ( )t np Ap P F p   .                                                       (8-1) 

      

For any fixed  n   it is ODE in  
nR  with the Lipschitz vector field and the flow  ( )nS t .         

 

    THEOREM  8.1  [Kam1980].  If  K   be the hyperbolic CI-set of SPE (1-1) then 

for 0n n   exist the hyperbolic CI-sets  K n   of  ODE (8-1) and the 

homeomorphisms :nh  K   K n   satisfying (for  0t  )  the  following conditions: 

 

      1)  ( )n n n tS t h h    on  K  ;   2)  ( )n nh u u c


    on  K   and  0nc  . 

 

      It follows from this statement that the resolving semiflow  t   is injective on hyperbolic  

CI-set  K   and  the semiflows  t   on  K   and  ( )nS t   on  K n   are topologically adjoined.   

      The cited paper do not contain the proof but the one contained in PhD dissertation of  D. 

Kamaev (1980, in Russian).  

 

      Of course the most interesting case here is  K A.   It is known that the moving on the 

(nontrivial) hyperbolic attractor must be chaotically. It is striking that hyperbolic limiting 

dynamics of SPE (when it takes place) is equivalent the one of ODE.  The nontrivial hyperbolic 

attractor is clearly the large rarity in SPE’s dynamics, but one can hope that the strong (classical) 

hyperbolicity in the theorem 8.1 may be replaced to some weaker one.  

 

[Kam1980]  D.A. Kamaev.  Hyperbolic limit sets of evolutionary equations and the Galerkin   

                                                                         method.  Russ. Math. Surveys, 35:3, 239-243.         
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                             9. WHAT MAY BE DONE IN FURTHER        
 

     1. The main target must be the case of zero exponent of nonlinearity  ( 0  )  being typical 

for scalar or vector reaction-diffusion equations. Corresponding reasons are the following. 

  

       (A)   Accordingly corollary 7.2 the estimate  

 

                                         1/ 2( ) log
M

A u v C u v
u v

  


 

 

holds on attractor  A.  If somebody will establish the estimate  

 

                           
1( ) logn

n
R

R

M
L x y C x y

x y

   


         ( 1/ 2  )           (9-1) 

on the image  L A   for some linear (injective on  A)  embedding  : nL X R   then the property 

log-LFDA be hold. At present one can obtain any  1/ 2    in (9-1) if to prove the set  А   А  

be homogeneous, i.e. having the finite Bouligand-Assouad dimension (see [Ol-Rob2010],  

[Rob2010]). The last would be the «almost» property log-LFDA.  

 

      (B)  The scalar reaction-diffusion equations  

 

                                                         ( , )tu d u f x u                                                      (9-2) 

 

in bounded domains  
ND R   ( 2N  )  with smooth  f   are gradient-similar and admit the 

strict Lyapounov function  

 

                                          
21

( ) ( ( ) ( , ))
2

D

G u u x F x u dx   ,  

 

where  ( , ) ( , )uF x u f x u .  It is well known [Henry1981], [Temam1997] that in generic case 

the attractor of equation (9-2) consists of the finite number hyperbolic equilibrium points and its 

(smooth) unstable manifolds. Moreover in generic case the stable (smooth too!) and unstable 

manifolds of equilibrium points intersect transversally (see recent review [J-R2011] by R. Joly 

and G. Raugel). Lastly, the property LFDA holds [Rom2000-2001] if the attractor is contained in 

a finite-dimensional  
1C - submanifold in phase space. All this arguments seems be useful to 

proving the properties LFDA or log-LFDA for scalar reaction-diffusion equations in arbitrary 

dimension.  

 

      2.  It would be interesting to construct the example of SPE without property LFDA or log-

LFDA.  It needs note in this connection that even more simple examples of the smooth IM 

absence are constructing with the hard.  A SPE do not possess properties LFDA and log-LFDA if 

its resolving semiflow is not injective on attractor but now does not known the similar equation 

for which backward uniqueness be false. It is strikingly, but at present still unknown the example 

of SPE without Lipschitz IM!   
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     3. I seem the properties LFDA or log-LFDA must be valid (may be in some additional 

conditions) for SPEs (1-1) with analytic nonlinear term (2d N-S,  for example). In this case 

[Henry1981 ] the resolving semiflow is jointly analytic on time and on phase variable. To certain 

PDEs the solutions  ( )u t   are analytic on space variable too [Foi-Tem1989].  It may be showed 

(doing as in [Prom1991], for example) that the solutions  ( ), ( )u t v t   lying on attractor  А  

continue analytically and uniformly boundedly to the strip  : ImD z  ,  z t i  ,  

  (А).  The complex analysis arguments may be apply now to the difference  

( ) ( ) ( )w z u z v z    and the following statement may be got.   

 

     PROPOSITION  9.1.  Suppose may be found values  1  ,  00 /t      and  

(M M А)  for which the estimates  

  

                                         0

0

!
( ) (0)

( )

k

k k

d w M k
t w

dt t 



                                   (9-3) 

 

take place for all  1k  ,  w u v    ( ,u v А).  Then the property LFDA holds for 

SPE (1-1). 
 

      Really the estimate  1u v M u v         with  0( 1) / 2t     is 

obtaining here and criterion (Fl0) is using. We emphasize that at least in the case  0    the 

inequalities of a type  (9-3) with  1    follow automatically from the Cauchy formula and the 

estimate  ( ) const w(0)w z
 
    being valid in the rectangle  00 Re 2z t  ,  

Im z  . 
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